IMPROVING THE SENSITIVITY OF THE CDMS DETECTOR TO DARK MATTER PARTICLES:
UNDERSTANDING AND REJECTING SOURCES OF NOISE IN THE EXPERIMENT

Jorge D Morales
Master’s Defense

07 / 22 / 2014
OUTLINE

• I. Motivation: Understanding Dark Matter in the Universe

• II. The CDMS Experiment and the Hunt for Dark Matter Particles

• III. Separating Real Particles From Noise

• IV. Identifying Potential Sources of Noise: Methods and Results

• V. Looking Towards the Future

• VI. Conclusions
I. MOTIVATION

UNDERSTANDING DARK MATTER IN THE UNIVERSE

EVIDENCE OF DARK MATTER FROM MULTIPLE SOURCES

Example 1

- The rotational velocity of stars in the outer part of a galaxy ‘should’ match the amount of mass observed from stars and gas in the inner part of the galaxy.

- Observed velocity is what you would expect if there is a large amount of mass you can’t see.

Example 2

- Einstein ring: Large amounts of dark matter in a "near" galaxy can lens the light from a galaxy behind it.
I. MOTIVATION

TRYING TO DISCOVER DARK MATTER PARTICLES

EVIDENCE OF DARK MATTER FROM MULTIPLE SOURCES

Example 3

- Cosmic Background Radiation measurements indicate that there is a large amount of mass in the universe not in atoms.

Example 4

- Colliding clusters of galaxies provide evidence that Dark Matter is likely to be a particle.
IF DM IS A PARTICLE, WHAT DO WE KNOW ABOUT IT? HOW CAN WE DISCOVER IT?

- Weakly Interacting

- Massive Particle

- Neutral

- Neutrinos are ruled out

- Most believe it must be a new particle, i.e. from Supersymmetry

Possible ways to discover DM:

- WIMP
- Annihilation / freeze out
- Indirect detection
- Collider production
- Combination
- Direct detection

CDMS is an experiment designed to detect DM interactions with SM particles in a detector (diagram with time going vertically upward)
II. CDMS and the Hunt for Dark Matter

DARK MATTER PARTICLES AND THE CDMS DETECTOR

• Earth is moving through the DM Halo of the Milky Way

• Look for an interaction between a DM particle and a heavy nucleus in a sensitive detector (CDMS)

Nuclear Recoil produces vibrations (phonons) that propagate in the lattice

Few keV of energy deposited in the crystal lattice (depends on DM mass)
How often this happens depends on the DM-nucleon cross section
II. CDMS and the Hunt for Dark Matter

CRYOGENIC DARK MATTER SEARCH (CDMS) EXPERIMENT

Sensitive to 7 keV of energy deposit

Detectors at 80mK
Right at transition between being normal conducting and superconducting

Detector is deep underground to keep Cosmic Background from faking DM interaction

Shielding:
- Polyethylene
- Ancient Lead
- Low Activity Lead

Tuesday, July 22, 2014
II. CDMS and the Hunt for Dark Matter

FROM A PARTICLE INTERACTION TO A SIGNAL OUT OF A TRANSITION EDGE SENSOR (TES)

- A DM particle will interact and create vibrations in the lattice: Phonons

- Phonon production and collection process:
 1. phonons created in the interaction
 2. phonons travel to the aluminum
 3. break up Cooper Pairs and couple to one of the electrons in the pair
 4. electrons are absorbed by the Transition Edge Sensor (TES) changing it’s temperature (which changes its resistance, and the amount of current that flows through it)

Transition Edge Sensor (TES):
Resistance as function of temperature in the transitioning phase (Super/Normal - conducting) → the changing resistance creates a signal
II. CDMS and the Hunt for Dark Matter

FROM THE TES TO THE SQUID: GETTING SIGNALS OUT OF THE DETECTOR

- Superconducting QUantum Interface Device (SQUID): measures the current change of the TES. It’s output is what we call the ‘phonon pulse’

![Diagram of TES and SQUID setup](image)

- 2 sides, each side 4 sectors

Each SQUID provides a PULSE

PULSE is sent to Downstream Electronics

Tuesday, July 22, 2014
The TES operation is controlled by a bias voltage, V_{bias}. Can change the detector between Normal Conducting, Super Conducting or Transition Conducting (normal data taking mode).

After phonons are generated in the crystal, the TES has an increase in temperature which in turn changes its resistance (and the amount of current that flows).

The SQUID measures the change in the current of the circuit. Its output is a pulse.

Other Electronics take the pulse and do the rest of the data acquisition chain. Amplification, Triggering, Filtering, etc.
III. Separating Real Particles From Noise

LOOKING AT DETECTOR PHONON PULSES

- When a particle interacts we get phonon pulses:
 - A signal in all 8 channels
 - Can determine where the particle hit in the detector
 - Can measure how much energy the particle deposited

- When no particle hits the detector:
 - Just read out ‘noise’ from detector (see right)

- Problem: Signal from a DM particle is not as big as above, so we need to be really sensitive and distinguish between a small pulse from the noise (below)
III. Separating Real Particles From Noise

PURPOSE OF THIS STUDY

- Want to be sensitive to light DM particles which don’t deposit much energy in the detector

- Sensitivity is determined by the ability to separate small real-particle-pulses (signal) on top of the detector output when there is no particle (noise)

- The amount of noise also affects our ability to measure the amount of energy deposited if we believe the pulse is from a real particle

GOALS:

- Understand the sources of noise
- Make suggestions on how to reduce them
• Take data when no particle interactions are occurring

• Randomly select a time to start writing out data:
 - unlikely to have real particles interacting
 - pure sample of ‘noise’

• The longer the time, the better information we have for noise analysis
 - 750µs is a typical real particle pulse time
 - Total time > (2x before + 750µs + 5x after)
 - Total time ~ 100,000 µs

• Ratio of interaction of a Cosmogenic particle is ~1 per minute so our total time is ok
IV. Potential Sources of Noise: Method

POSSIBLE SOURCES OF NOISE IN THE EXPERIMENT

1. **V_{bias} Electronics:**
 Electronics that set the V_{bias} level could inject noise into the experiment.

2. **Non-interaction Phonon Production:**
 Vibrations of the detector, occurring in the crystal, measured accurately by the TES, and sources of noise.

3. **Detector Level Inductive Coupling:**
 Could get noise from the TES-SQUID electronics.

4. **Other Electronics:**
 Could get noise from the electronics after the detector, for example in the amplification, triggering, or filtering process.
IV. Potential Sources of Noise: Method

METHODS FOR STUDYING THE AMOUNT OF NOISE

- Sources of noise expected to occur at specific frequencies

- Look at the data in the Frequency Domain

- Use Fast Fourier Transforms (FFT) \rightarrow Power Spectral Density Function (PSD)

Example: Breaking a Pulse with FFT

$- y$: amplitude
$- x$: time

$- y$: amplitude in the Power Spectrum
$- x$: frequency

- Look at many events (lots of noise) to see which frequency is most prevalent
BASE NOISE OF THE TES/SQUID CIRCUIT

• ‘Johnson Noise’
 - Intrinsic to the TES/SQUID circuit
 - Characteristic of the amplification of the TES/SQUID pulse

• Depends on the Resistance and Temperature of the elements in the circuit, it is proportional to the Resistance and Temperature product of each element.

Cut-off frequency

• The cut-off frequency is determined by the impedance
IV. Potential Sources of Noise

STANDARD CONFIGURATION DATA

(V_{bias} is set so that the TES is in Transitioning Mode)

- Baseline Noise: from TES/SQUID electronics (Johnson Noise)
- Rising region: will show this is from low frequency detector vibrations < 60 Hz
- Spikes: noise from various sources 100 Hz - 1 kHz (phonon, detector electronics, or other electronics noise)
IV. Potential Sources of Noise: Method

COLLECTING SAMPLES OF NOISE IN DIFFERENT DATA TAKING CONFIGURATIONS

A. Standard Configuration
 Usual configuration for data
 $V_{bias} = V_{threshold}$

B. Normal Conducting
 Bias current set at 1000uA
 $V_{bias} >> V_{threshold}$

C. Super Conducting
 Bias current set at 0uA
 $V_{bias} << V_{threshold}$

- TES is in transitioning phase between normal conducting and superconducting
- Phonons are collected and detector is sensitive to them (gives pulses)
- Resistance never changes much, (amplified) current of SQUID is always small
- So phonons from the detector don't create output signals
- There is minimum amplification of any noise from TES/SQUID
- Resistance never changes much, (amplified) current of SQUID is always large
- Phonons are not amplified so no output signal from phonons
- Maximum amplification from any TES/SQUID noise
IV. Potential Sources of Noise: Method

HOW TO UNTANGLE THE SOURCES OF NOISE

1. Vbias Electronics: If peaks are due to noise from the Vbias control then they should be bigger or smaller depending on the the overall resistance in the circuit. The amount is known, so the ratio of the peaks should follow this ratio
 \[A/B \sim 1/3 \quad A/C \sim 7 \]

2. True Phonon Production: If noise is due to detector vibrations, then we should not see any noise when we are not sensible to phonons (modes B & C)

3. Detector Level Inductive Coupling: From PSDs it is the same as Vbias 1, but we can look at correlation between channels/detectors depending on the connections/card dependencies of the channels within each detector

4. Other Electronics: If the noise is due to the electronics after the SQUID (Other Electronics), then the peaks should be in the same place and have the same size regardless of the experiment mode
IV. Potential Sources of Noise

DETECTOR READOUT IN NORMAL CONDUCTING DATA

- When the TES has a Temperature/V_{bias} configuration that makes it normal conducting, the readout signal is insensitive to phonons in the detector.

- No big slope at low frequencies. Noise in the previous plot must be due to phonons ‘intrinsic’ to the detector somehow.

- Spikes still exist, must not be due to phonons, but to some part of the electronics. Note the big spike at 60Hz (suggestive number).

- Lower baseline, but that’s expected because there is more resistance.

- No ‘cut-off’ here because it’s off scale.

Amplitude Baseline
From Johnson Noise: \(3.63 \text{ pA/}\sqrt{\text{Hz}}\)

Cut-off frequency from Impedance: \(250 \text{ kHz}\) (Out of range)

Tuesday, July 22, 2014
IV. Potential Sources of Noise

DETECTOR READOUT IN SUPERCONDUCTING DATA

- When the V_{bias} sets the TES in superconducting mode, again the readout signal is insensitive to phonons in the detector.

- Smaller TES resistance gives greater baseline noise

- Only see one spike at 60Hz again. Other spikes are gone, perhaps swamped with baseline noise?

- Lower threshold Cut-off as expected

Amplitude Baseline From Johnson Noise: $44 \text{ pA/}\sqrt{\text{Hz}}$

Cut-off frequency from Impedance: 11.9 kHz
IV. Potential Sources of Noise: Method

COMPARING ALL THREE SETS OF DATA AT THE SAME TIME (FOR A SINGLE DETECTOR) AND DRAWING QUALITATIVE CONCLUSIONS

- Other Electronics:
 - 60 Hz noise always present. This tells us it is likely to be in the electronics. Especially since the amount of noise at this frequency is always the same.
 - Peaks of this kind are 1 to 1 ratio regardless of mode.

- Noise from Phonons:
 - Only see this rising noise in Standard Mode (not in Superconducting nor Normal Conducting). Indicates it is due to phonons that are always present in the detector.
 - Also see some phonon spikes (not present in modes insensitive to phonons).

- Spikes due to V_{bias}
 - Electronics / Inductive Coupling:
 - Change in the amplitude of peaks (they depend on resistance ratio of the different modes, but some mixing with ‘Other Electronics’ could change it).
 - Std/NC~1/3 Std/SC~7 NC/SC~21
LIMIITATIONS OF THE STUDY

- Unfortunately we are not able to discriminate between a capacitively coupled (TES V_{bias}) noise and an inductively coupled (SQUID) noise, but we can see if the noise is common to phonon channels connected to the same electronics board - Front End Board (FEB) - as opposed to a detector.

- The FEB connections to the TES channels are combined:
 - 2 cards per detector
 - 2 channels per side in each card
IV. Potential Sources of Noise: Results

MOVING FROM OUR EXAMPLE DETECTOR TO NOISE IN OTHER DETECTORS. NOT ALL DETECTORS ARE THE SAME

- Again see the 60 Hz peak (true for most detectors)
- Some detectors have spikes due to "phonon peaks", not just the slope (build-up). Due to cryogenics?
- Many peaks/features are combined electronics noise (from \(V_{bias} \)/Inductive and Other Electronics)

![Graph showing phonon peaks and other electronics noise](image)

Phonon peak
Phonon build-up
Other Electronics 1to1 ratio

Tuesday, July 22, 2014
IV. Potential Sources of Noise: Results

THIRD EXAMPLE: V_{bias}/INDUCTIVE PEAKS

- 60Hz peak is not the same, it is possible that V_{bias}/Inductive noise is coupled as well as Other Electronics noise

- Clear peak due to V_{bias}/Inductive noise, scales accordingly:
 - Std/SC ~ 7
 - Std/NC ~ 1/3
 - NC/SC ~ 21

- In Standard Bias these peaks could be masked by baseline + phonon noise

- In Superconducting mode peaks must be dominant due to the resistance ratios
IV. Potential Sources of Noise: Results

RESULTS FOR THE FULL SET OF DETECTORS

• For each detector we have qualitatively identified the principal sources of noise in two regions

• Comment on noise in two different regions:
 - < 60 Hz Background
 - 100 Hz - 1 kHz peaks
IV. Potential Sources of Noise: Results

RESULTS FOR ALL DETECTORS

• < 60 Hz Background Results:
 - Most of the detectors clearly show real phonon noise
IV. Potential Sources of Noise: Results

RESULTS FOR ALL DETECTORS Continued...

• 100 Hz - 1 kHz peaks

- Different detectors show different noise sources, but overall noise is similar in all channels of the same detector (as opposed to some channels)
- Other Electronics noise doesn’t appear in all channels of same detector
- All detectors show real phonon source peaks
- Some show additional V_{bias}/Inductive peaks, others show no sources of this kind

<table>
<thead>
<tr>
<th>Phonon Dominated:</th>
<th>Inductively/V_{bias} Dominated:</th>
<th>Compromise between both:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Include odd downstream electronics coupling (at least one peak): □
V. Looking Towards the Future

IDEAS TO REDUCE/CANCEL NOISE IN THE FUTURE

• Flip the Polarity of half of the channels:
 - Invert V_{bias} of 4/8 channels
 - Real phonon signal should flip
 - After-amplification signal will not (i.e. ‘Other Electronics’ noise)

• Potentially cancel the ‘Other Electronics’ noise

• Complications:
 - Noise should be properly identified and STRONGLY correlated between channels, if not, then it means that noise is not matching exactly the same frequency, so we are killing more than just noise
 - This type of noise should be strongly correlated in the NC mode (since in principle it is where electronics noise should be dominant)
• The SnoLAB Experiment was just approved!

• All detectors have noise that appears to be due to vibrations, so better Casing and Supporting Structure is needed for Next Generation - most noise is phonon related (independent studies relate the Cryocooler noise with the pulses)

• Better Electronics to suppress all electronics noise, mostly at TES/squid level, but also downstream - some electronics peaks

• Inverting Bias on half of the output channels may lead to electronics (post TES) noise suppression - currently exploring this idea, we are not certain if it is possible to do without suppressing too much signal
CONCLUSIONS

• CDMS is one of the most sensitive experiments

• Noise in the detector impacts our sensitivity to low mass Dark Matter particles

• Have uncovered and understood (qualitatively) a number of sources of noise in the experiment and made recommendations to help remediate some of them

• Looking forward to the next generation of the CDMS Experiment with improved detectors, casing, and readout equipment at SnoLAB which was just approved
ACKNOWLEDGEMENTS

Many thanks to:

David Toback
Matt C. Pyle
Rupak Mahapatra
Guy Almes
Sriteja Upadhayula
BACKUP
A. BACKUP

DIRECT DETECTION

Sensitive to 7keV of energy deposit (LUX: ~3.3 keV, SCDMS-II: 2keV)

• CDMS (Cryogenic DM Search) → Super CDMS

• DAMA (100 kg sodium iodide crystal) → DAMA/LIBRA (250 kg, Gran Sasso, Italy)

• XENON10 (15kg liquid xenon) → XENON100

• KIMS (Korea Invisible Mass Search)

• XMASS (800 kg spherical liquid Xe, Japan)

• Ionization (eV, ε~20%)

• Scintillation (keV, ε~1%)

• Phonon (meV, ε~100%)

Tuesday, July 22, 2014
II. CDMS and the Hunt for Dark Matter

FROM A PARTICLE INTERACTION TO A SIGNAL OUT OF A TRANSITION EDGE SENSOR

- A DM particle will interact via vibrations of lattice: Phonons
- Phonon production and collection process:
 1. super-rapid phonons (athermal)
 2. phonons break superconducting cooper pairs
 3. cascade phonons are produced
 4. phonons couple to freed electrons
 5. finally they diffuse into the tungsten Transistor Edge Sensor (TES)

athermal: more energetic than typical energy; at least 2 superconducting AL gap

Tuesday, July 22, 2014
III. Separating Real Particles From Noise

COSMOGENIC BACKGROUND

- 750µs is a typical real particle pulse time
- Total time of our samples ~ 100,000 µs
- Cosmogenic background (muons mostly) interact with the detector (passing the scintillating veto)
 - 1 every 64.4 ± 0.1 s
 - energy threshold choice is 1 V (≈ 6.9 MeV)

http://cdms.berkeley.edu/Dissertations/fritts.pdf
II. CDMS and the Hunt for Dark Matter

V\text{BIAS} AND FRONT END BOARD

• The V\text{bias} is actually on the Front End Board, which ALSO does a part of the read-out electronics

V\text{bias} Control

TES needs V\text{bias} to operate
Front End Board provides V\text{bias}

• Vbias sets the TES R vs. T Curve

Temperature is fixed at 80mK

![Graphs showing R(\Omega) vs. Temperature (mK) for Normal Conducting, Transitioning, and Superconducting states.]
IV. Potential Sources of Noise: Method

BASE NOISE OF THE TES CIRCUIT

- ‘Johnson Noise’
 - Intrinsic of the TES/SQUID circuit
 - Characteristic of the amplification of the TES SQUID pulse

- Depends on the Resistance and Temperature of the elements in the circuit

\[
S_i^2 = \frac{4 k_B (\Sigma R_i T_i)}{(\Sigma R_i)^2}
\]

- The cut-off frequency is determined by the impedance

\[
\frac{\text{d}I}{\text{d}V} = \frac{1}{Z} = \frac{1}{(R_L + R_{\text{TES}} + \omega L_j)}
\]

- By setting a Vbias/Ibias (from FEB), we set the TES resistance in the circuit

<table>
<thead>
<tr>
<th>Element</th>
<th>Resistance</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_L</td>
<td>34 mΩ</td>
<td>1.2 K</td>
</tr>
<tr>
<td>R_{TES}</td>
<td>(0 or 600) mΩ</td>
<td>80 mK</td>
</tr>
</tbody>
</table>
IV. Potential Sources of Noise

B. NORMAL CONDUCTING DATA

- This plot shows what the readout looks like when we are insensitive to phonons.

- No big slope at low frequency.

- Spikes still exist.

- Lower baseline, but that's expected because there is more resistance.

- No cut-off here because it's off scale.

Amplitude Baseline From J-Noise: 3.63 pA/√Hz

Cut-off frequency from Impedance: 250 kHz (Out of range)
IV. Potential Sources of Noise

C. SUPERCONDUCTING DATA

- This plot shows what the readout looks like when we are insensitive to phonons, but the amplification on the TES/SQUID circuit is maximum

- Smaller TES resistance gives greater baseline noise

- Spikes are swamped but if spikes persist they are other electronics or (if scaled accordingly) V_{bias}/Inductive noise

- 55-60 Hz electronics noise (Mains Hum)

- Lower threshold Cut-off as expected

Amplitude Baseline From J-Noise: 44 pA/√Hz

Cut-off frequency from Impedance: 11.9 kHz
JOHNSON NOISE AND PARASITIC RESISTANCE

A. BACKUP

JOHNSON NOISE AND PARASITIC RESISTANCE

\[S_I^2 = \frac{4 k_B (\Sigma R_i T_i)}{(\Sigma R_i)^2} \]
\[S_{II} = \frac{\sim 1 \text{ pA}}{\sqrt{\text{Hz}}} \]

NC: \(G_T \approx 3.63 \text{ pA/} \sqrt{\text{Hz}} \).
SC: \(G_T \approx 44 \text{ pA/} \sqrt{\text{Hz}} \).

- Johnson Current
- Parasitic Resistance (Average)

<table>
<thead>
<tr>
<th>Element</th>
<th>Resistance</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_L)</td>
<td>34 mΩ</td>
<td>1.2 K</td>
</tr>
<tr>
<td>(R_{TES})</td>
<td>(0 or 600) mΩ</td>
<td>80 mK</td>
</tr>
<tr>
<td>(R_{shunt})</td>
<td>20 mΩ</td>
<td>1.1 K</td>
</tr>
<tr>
<td>(R_{Al \text{ wire bonds}})</td>
<td>2 × 4 mΩ</td>
<td>1.1 K</td>
</tr>
<tr>
<td>(R_{pins(a)})</td>
<td>2 × 1 mΩ</td>
<td>4 K</td>
</tr>
<tr>
<td>(R_{pins(b)})</td>
<td>2 × 1 mΩ</td>
<td>1.1 K</td>
</tr>
<tr>
<td>(R_{pins(c)})</td>
<td>2 × 1 mΩ</td>
<td>80 mK</td>
</tr>
<tr>
<td>(R_L)</td>
<td>34 mΩ</td>
<td>1.2 mK</td>
</tr>
</tbody>
</table>

\(\text{Std/NC=230mΩ/630mΩ \sim 1/3} \) \quad \text{Std/SC=230mΩ/30mΩ \sim 7} \)
IV. Potential Sources of Noise: Results

4TH EXAMPLE: BORDERLINE V_{BIAS}/INDUCTIVE PEAKS

- Vbias/Inductive noise can combine with Other Electronics noise
- Don’t see a perfect ratio, the downstream electronics noise adds, but it is clearly not a phonon noise (because it is not dominant in Std)
WHAT WE KNOW ALREADY

• Low frequency vibrational noise pickup appears in all channels of the same detector

• Same noise appears in two different electronics chains with the same magnitude

• Other detectors in the same tower present different vibrational coupling

• This disfavors:

 2. Vbias Electronics: at the TES level, capacitive coupling affecting the voltage bias (Vbias)

 4. Downstream Electronics: in the read-out, triggering, or filtering process
Mostly coupled by athermal phonons, or, for non-vibrating detectors through a \(\text{vbias} + \text{downstream} \) coupling mechanism. (Of course excluding the \(~60\text{Hz Mains Hum, which affects pretty much all detectors}~\).)

The baseline noise (background) in the range \(< 600\text{Hz} \) (and possibly \(< 500\text{Hz} \) is phonon coupled, and affects noticeably 13 detectors in all working channels.

The peaks in the range 100 - 1kHz are both phonon and electronically (\(\text{vbias} + \text{downstream} \)) coupled, a list of dominant mechanism per detector is provided, and few (4/15) detectors include signs of downstream electronics noise (only in some channels 17/28 channels in total).

Now that we know that the predominant noise is athermal phonon coupled or \(\text{Vbias} + \text{downstream} \) coupled, we can try to make a covariance/correlation study of each phonon channel within the same detector. This can not only tell us effectively if the noise is detector correlated, but it can tell us which frequencies are preferrably correlated between channels, and ultimately it may provide ways of supressing some modes.

100 - 1000 Hz peaks:
- Most cases it is electronically coupled and phonon coupled
- Some seem like fft harmonics of the 60Hz peak that keep the SC/Std and NC/Std factors, so it is electronically (Vbias) coupled
- In other cases the noise turns on when the detector is in the transitioning phase, which means there is also a phonon coupling
- Also, in fewer cases some downstream electronics peaks appear (keeping the 1-to-1 ratio)

A lot of the noise disappears in the Super Conducting mode, the persisting peaks should be electronically coupled, although only the stronger ones persist, and whenever SC/NC show a factor close to 21 the noise is electronics (Vbias/Inductively) related

For phonon dominated detectors, since the noise peaks seem to be detector related, not FEB/squet/dib related, this helps to discard the downstream electronics and Vbias coupled electronics, although some exceptions occur in the 60Hz peak
REMARKS

- <60Hz: phonon coupled: most detectors show relatively flat SC and NC PSDs in this range, while the Std shows an intense background (detailed count in the following section)
- Homogenously decreasing background from 10 - 1kHz: again, seems to be a tail from the <60Hz region
- 60Hz peak:
 - Electronically coupled possibly the common 'Mains Hum' affecting all electronics, both downstream electronics and detector electronics
 - In some cases it is also downstream because the peaks are 1-to-1
 - But in other cases it seems like the noise couples inductively (i.e. SC/Std is close to a factor of 7, and NC/Std close to 1/3)
- 100 - 1000 Hz peaks: complicated but most important region
- 2kHz: inductively/vbias coupled (doesn't appear in all detectors/channels)