Searching for Dark Matter with the CDMS Detector

Sean Yeager
Master's Defense
8 November 2013

Texas A&M Department of Physics and Astronomy
Outline

Dark Matter and WIMPs

The Cryogenic Dark Matter Search (CDMS) Experimental Layout

Backgrounds and their Interaction with the Detector

Results, Conclusions, and the Future
Dark Matter and WIMPs
Cosmology + Particle Physics

Questions about the early universe require knowledge about its smallest inhabitants.

Likewise, understanding the universe gives us knowledge about fundamental particles.
Dark Matter

There is a large amount of evidence supporting the existence of dark matter.

Dark matter is found throughout the universe and is about $1/4$ of the mass energy of the universe.
Dark Matter as a Particle?

The Bullet Cluster suggests that dark matter may be particle in nature

If dark matter is made of particles, we know some properties, but have to guess others
Weakly Interacting Massive Particles

Experiments put an upper limit on interaction cross section that is comparable to that of the weak force.

There are many different methods of looking for WIMPs.

CDMS uses the direct detection method of a WIMP interacting with a nucleus.
The CDMS Experimental Layout
Detector Basics

Use 3” detectors

Each detector features a superconducting crystal lattice of heavy nuclei

Some are Si, some are Ge

They provide extremely precise timing and energy resolution for low energy interactions
Why Si and Ge?

When a particle interacts with a nucleus in the detector, it imparts a small amount of energy. The amount deposited depends on the mass of the nucleus and the mass of the particle.

Since most interactions deposit a only small amount of energy, we use as low an energy threshold as possible.
Particle Interactions

Particle interactions can deposit energy in two ways:
1) The direct ionization of electrons
2) The creation of lattice vibrations, or phonons

The detector is designed to measure both to determine what type of particle deposited energy
Ionization Channel

A voltage is applied to the crystal

Any charge carriers produced in the interaction move towards the edges where they are collected

Collector
Ionization Channel Continued

We can plot the amount of collected charge vs. time

Notice steep rise time, use this to identify when pulse starts

Use the peak to measure the recoil electron's energy which we will later use to identify the particle – call this ionization energy
Phonon Channel

The detector is held at $\sim\text{mK}$, in the superconducting temperature range.

Any phonons produced will cause a small increase in temperature which causes a large increase in resistance.

We measure this with Transition Edge Sensors (TES's) and Superconducting Quantum Interface Devices (SQUIDs).
Phonon Channel Continued

The output of the SQUID is a measurement of current vs. time

The area under the curves gives a measure of the total energy that converted to phonons

The initial slope, or rise time, will play a role later
Signals and Backgrounds

Will describe what a WIMP signal looks like in the detector after describing how different SM particles will interact with the detector.
Backgrounds and their Interaction with the Detector
Overview of Backgrounds

Signal-like

WIMPs and Neutrons scatter from the Atomic Nucleus

Backgrounds

Photons and Electrons scatter from the Atomic Electrons
Electrons and Photons

When electron or photon interacts with the detector, it deposits energy in the recoil electron which is ionized.

Take measurements from ionization and phonon channels, plot them.

Calibrate for electron recoil with gamma radiation from ^{133}Ba.
Neutrons

When a neutron (or a WIMP) interacts with the detector, it excites a nucleus.

The excited nucleus has several ways to lose its energy – ionizing electrons is one of them.

For the same phonon measurement, we only observe about 1/3 as much ionization energy.

We can use this to separate nuclear recoils from electron recoils.

Calibrate for neutron recoil with 252Cf.
Background Sources

1) Cosmogenic particles which are products of cosmic rays

2) Radiogenic particles which are the result of the radioactive decays near the detector
Cosmogenic Backgrounds

Put experiment deep underground and identify via coincidence with cosmic muons
Muons themselves are easy to identify, interact on the MeV scale
Radiogenic Backgrounds

Use polyethylene shielding to reduce radiogenic neutrons

Surround detector with lead to minimize radiogenic gamma penetration
Switching to Yield for Biggest Background

\[\text{Yield} = \frac{E_{\text{ion}}}{E_{\text{phonon}}} \]

Can be used to more easily distinguish electron recoils from nuclear recoils
The Dominant Background: Electron Recoil Surface Events

Near the surface of the detector the ionization energy is measured as smaller than it actually is.

This results in surface events faking nuclear recoil events since they show up in the nuclear recoil band.

Use timing to identify surface events, since they arrive at sensors faster.
Solution: Timing

Property of phonons: they multiply at surface transitions

This means that phonons from surface events will get noticed by the detector sooner and have a smaller risetime

Can use this to reject surface events
Blind Analysis

Develop cuts before even looking at data

Use calibrations to predict background as precisely as possible

Minimizes bias in analysis
Cuts and Background Estimation

1) Is a nuclear recoil (in green band)
2) Not a surface event

Use Geant4 and Monte Carlo simulations to predict number of all neutron recoil sources and surface electron recoil events.
Expected Background for Silicon

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiogenic Neutrons</td>
<td>$0.04 + 0.00 / -0.02$</td>
</tr>
<tr>
<td>Cosmogenic Neutrons</td>
<td>$0.04 + 0.04 / -0.02$</td>
</tr>
<tr>
<td>Surface Electron Recoils</td>
<td>$0.82 + 0.12 / -0.10$</td>
</tr>
<tr>
<td>Total</td>
<td>0.9 ± 0.2</td>
</tr>
</tbody>
</table>
Results, Conclusions, and the Future
Three Candidate Events

Detector T4Z3

Detector T5Z3

Normalized Yield vs. Recoil Energy (keV)

Normalized Timing Distribution

Surface Event

Neutron Distribution
More on the Three Events

All three are near our energy threshold

Monte Carlo simulations suggest a 5.4% chance of the background producing 3 or more events

The WIMP + background hypothesis is favored in a likelihood test over the background only hypothesis by 99.8%

Best fit WIMP mass is 8 GeV

The Ge detectors saw 2 events, but this was consistent with the expected background of 0.6 events
The Future

Lower our energy threshold to see if we can get more WIMP events.

Re-optimize our cuts with a focus on surface events

Upgraded to new Ge and Si detectors with better surface rejection (Super CDMS) and are taking data now

New results to be announced in two weeks

In a few years, moving to SNOlab, which will kill cosmogenic backgrounds with even better detectors
Conclusions

So far the three potential WIMP events are very suggestive

They hint at low mass WIMPs, since an excess was found in Si but not Ge

More data is currently being taken

Next step is to re-optimize the cuts and employ them in the improved detectors at Super CDMS at SnoLAB

The future is very bright for the search for dark matter at CDMS!
Questions?
Back Up Slides
Back Up – CDMS vs. LUX

At a very low threshold Xe is better than Ge
LUX claims a threshold of 3 keV
“More realistically 5.5 keV” -Rupak
Current CDMS threshold is 7 keV
New thresholds: 2 keV for Ge and 3 keV for Si

Also new CDMS results are in 2 weeks
Back Up - Upper Limits vs. Theory

Black line: CDMS
Red dots: XENON100
Grey: MSSM
Green: LEEST
Pink: mSUGRA
Back Up - Comparison to LHC

*for a 100 GeV/c^2 WIMP on Ge target with a 10 keV low-energy threshold
<table>
<thead>
<tr>
<th>Event</th>
<th>Detector</th>
<th>Recoil Energy</th>
<th>Yield</th>
<th>Charge Signal to Noise</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event 1</td>
<td>T4Z3</td>
<td>9.51 keV</td>
<td>0.27</td>
<td>4.87 σ</td>
<td>July 1, 2008</td>
</tr>
<tr>
<td>Event 2</td>
<td>T4Z3</td>
<td>12.29 keV</td>
<td>0.23</td>
<td>5.11 σ</td>
<td>Sep 6, 2008</td>
</tr>
<tr>
<td>Event 3</td>
<td>T5Z3</td>
<td>8.20 keV</td>
<td>0.32</td>
<td>6.66 σ</td>
<td>March 14, 2008</td>
</tr>
</tbody>
</table>