Particle Physics and Cosmology in the Co-Annihilation Region

Department of Physics, Texas A&M University
*Department of Physics, Regina University
Introduction

• What problems are we trying to solve?
 - Dark Matter
 - Hierarchy problem in the Standard Model
 - Other Particle Physics problems...

• Is there a single solution to both of these problems?
 - Minimal solution?
The Players and their Roles

Cosmologists/Astronomers Particle Theorists Particle Experimentalists

PPC 2007 Particle Physics and Cosmology in the Co-annihilation Region
5/17/2007 Dave Toback et. al., Texas A&M University
The Players and Their Roles

Astronomy and Cosmology tell us about Dark Matter

Particle Physics Theory Predicts Supersymmetry → Dark Matter Candidate

Experimentalists at FNAL/LHC do direct searches for SUSY particles

Learn more about the universe with two separate measurements of Ωh^2

Convert the masses into SUSY model parameters and Ωh^2

Do we live in a world with Universal Couplings?

Discover SUSY and measure the masses of the superparticles
Outline of the Talk

• Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{\text{stau}} - M_{\text{LSP}}$
• Identifying events at the LHC
 - Discovery and Experimental Observables
• Measurements of
 - Particle masses: ΔM, M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{\text{LSP}} h^2$
• Conclusions
1. Use the current constraints/understanding to motivate the co-annihilation region of Supersymmetry in mSUGRA

2. Assume this is a correct description of nature and see how well we could measure things at LHC

3. Convert these results into useful numbers for both particle physics and cosmology
Hypothetical Timeline

• Pre-2005: Strong constraints on Dark Matter density, the Standard Model and Supersymmetry

• 2005: Phenomenologists use these results to constrain a SUSY model → Tell the experimentalists at LHC where to look

• 2008-10: Establish that we live in a Supersymmetric world at the LHC

• 2011: Precision measurements of the particle masses and SUSY parameters → compare Dark Matter relic density predictions to those from WMAP
Many models of Supersymmetry provide a Cold Dark Matter candidate

Work in an Minimal Supergravity (mSUGRA) framework

- Build models from M_{Gut} to Electroweak scale
- Models consistent with all known experiments
- Universal Couplings
- Straight-forward predictions

More on this later
mSUGRA in 1 Slide

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{1/2}$</td>
<td>Gaugino mass at M_{GUT}</td>
</tr>
<tr>
<td>m_0</td>
<td>Scalar soft breaking mass at M_{GUT}</td>
</tr>
<tr>
<td>A_0</td>
<td>Cubic soft breaking mass at M_{GUT}</td>
</tr>
<tr>
<td>$\tan\beta$</td>
<td>$\langle H_2 \rangle / \langle H_1 \rangle$ at the electroweak scale</td>
</tr>
<tr>
<td>$\text{sign} (\mu)$</td>
<td>Sign of Higgs mixing parameter ($W^{(2)} = \mu H_1 H_2$)</td>
</tr>
</tbody>
</table>

Translation for Experimentalists and Cosmologists:

Each combination of these parameters uniquely determines the masses of all the superparticles and the Relic Density ($\Omega_{\tilde{\chi}_1^0} h^2$).
Example Translation

\[M_0 = 210 \text{ GeV} \]
\[M_{1/2} = 350 \text{ GeV} \]
\[\tan \beta = 40 \]
\[A_0 = 0 \]
\[\text{Sgn}(\mu) > 0 \]

\[M_{\tilde{g}} = 830 \text{ GeV} \]
\[M_{\tilde{\chi}_2^0} = 260 \text{ GeV} \]
\[M_{\tilde{\tau}} = 151.2 \text{ GeV} \]
\[M_{\tilde{\chi}_1^0} = 140.6 \text{ GeV} \]

\[\Omega_{\tilde{\chi}_1^0} h^2 = 0.1 \]

In general for mSUGRA models with University Constraints

\[M_{\tilde{g}} \sim 2.8 m_{1/2}, \quad M_{\tilde{\chi}_2^0} \sim 0.8 m_{1/2}, \quad M_{\tilde{\chi}_1^0} \sim 0.4 m_{1/2} \]
Experimental Constraints

Particle Physicists:

• Non-observation of the Higgs and the Gauginos and their mass limits
• Measurement of branching ratio of the b-quark $\rightarrow s\gamma$

Astronomers and Cosmologists:

• WMAP measurement of the Relic Density
 • $M_{Higgs} > 114$ GeV
 • $M_{\text{chargino}} > 104$ GeV
 • $2.2 \times 10^{-4} < Br (b \rightarrow s\gamma) < 4.5 \times 10^{-4}$
 • $a_\mu \times 10^{-10} = 27 \pm 10$ (g - 2)
 • $0.094 < \Omega_{\chi_1^0} h^2 < 0.129$ (WMAP)
Particle Physics Constrained Region

- Higgs Mass (M_h)
- Branching Ratio $b \rightarrow s\gamma$
- Neutralino LSP
- Magnetic Moment of Muon

If confirmed...
“Vanilla” mSUGRA and Cosmology

mSUGRA parameters uniquely determine the
- LSP mass
- Interaction Cross Sections
- Sparticle abundances in the early universe
- Relic Density today

Use WMAP Relic Density measurements to further constrain SUSY parameter space

Typically the following annihilation diagrams are important...
Problem

• Most of mSUGRA space predicts too much Dark Matter today
• Need another mechanism to reduce the predicted LSP relic density to be consistent with the amount of Dark Matter observed by WMAP
Co-Annihilation?

- If there is a second SUSY particle with small mass (similar to that of the LSP) it can have a large abundance in the early universe.
- The presence of large amounts of this second particle would allow large amounts of the LSP to annihilate away and reduce the relic density observed today.
 - Co-annihilation effect (Griest, Seckel:92)
 - Common in many models

The lightest \(\tilde{\tau} \) is a good candidate.
Small \(\tilde{\tau} \) Mass

In mSUGRA models the mass of the lightest \(\tilde{\tau} \) can be close to the \(\tilde{\chi}_1^0 \) mass because of the Renormalization Group Equations (RGEs) for small \(m_0 \).

For small mass difference we can get the right relic density

\[
\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0} = 5 \sim 15 \text{ GeV}
\]
Add Dark Matter Constraints

- Higgs Mass (M_h)
- Branching Ratio $b \rightarrow s\gamma$
- Magnetic Moment of Muon

If confirmed...

- WMAP Favored region
- Excluded
- Mass of Squarks and Sleptons
- Neutralino LSP
- Mass of Gauginos
Aside on our Assumptions...

The WMAP constraints limits the parameter space to 3 regions that should all be studied:

1. The stau-neutralino co-annihilation region

If \((g-2)_\mu\) holds, mostly only this region is left

Concentrate on this region for the rest of this talk...
What if the Co-Annihilation Region is realized in Nature?

1. Can such a small mass difference be measured at the LHC?

The observation of such a striking small ΔM would be a smoking gun!

→ Strong indication that the neutralino is the Dark Matter

2. If we can observe such a signal, can we make important measurements?
Outline

• Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{\text{stau}} - M_{\text{LSP}}$

• Identifying events at the LHC
 - Discovery and Experimental Observables

• Measurements of
 - Particle masses: ΔM, M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{\text{LSP}} h^2$

• Conclusions
Structure of the Analysis

1. Use the current constraints/understanding to motivate the co-annihilation region of Supersymmetry in mSUGRA.

2. Assume this is a correct description of nature and see how well we could measure things at LHC.

3. Convert these results into useful numbers both particle physics and cosmology.
A Smoking Gun at the LHC?

High Energy Proton-Proton collisions produce lots of Squarks and Gluinos which eventually decay

Identify a special decay chain that can reveal ΔM information

$\tilde{q} \rightarrow \tilde{g}$

$\tilde{g} \rightarrow \tau^+ \tau^-$

$\tau^+ \rightarrow \tau^+ \tilde{\chi}^0_1$

$\tau^- \rightarrow \tau^- \tilde{\chi}^0_1$

$\tilde{\chi}^0_2 \rightarrow \tau^+ \tau^-$

$\tilde{\chi}^0_1 \rightarrow \tau^- \tilde{\chi}^0_1$

$\tilde{\chi}^0_1 \rightarrow \tau^- \tilde{\chi}^0_1$

$\tilde{\chi}^0_2 \rightarrow \tau^+ \tau^-$

$\tilde{\chi}^0_1 \rightarrow \tau^- \tilde{\chi}^0_1$
Trigger on the jets and missing E_T

Particle Physics and Cosmology in the Co-annihilation Region

Dave Toback et. al., Texas A&M University
Not just any τ will do!

Our τ’s are special!

1. χ_2 decays produce a pair of opposite sign τ’s
 - Many SM and SUSY backgrounds, jets faking τ’s will have equal number like-sign as opposite sign

2. Each χ_2 produces one **high energy** τ and one **low energy** τ

3. The invariant mass of the τ-pair reflects the mass of the SUSY particles and their mass differences

\[M_{\tau\tau} \propto M_{\chi_2}^0 \sqrt{1 - \frac{M_{\chi_1}^2}{M_{\chi_2}^2}} \sqrt{1 - \frac{M_{\tilde{\tau}_1}^2}{M_{\chi_1}^2}} \]
Create a Sample of $\tilde{\chi}_2^0$ Events

- Require at least two τ's to get our $\tilde{\chi}_2^0$
- Large Missing Transverse energy to get the $\tilde{\chi}_1^0$
- At least one very energetic jet to indicate the presence of a squark or gluino at the top of the chain

The dominant background is typically ttbar, so we require an extra object and large kinematics to reject it

1. Require a third τ from one of the other gauginos (common) \rightarrow 3τ+Jet+Met
2. Require a second large jet from the other squark/gluino and large H_T \rightarrow 2τ+2Jets+Met

More details in

Some Technical Details

Use event kinematics to separate SUSY from $t\bar{t}$

SUSY Events
$M_g = 850$ GeV
$\Delta M = 9$ GeV

$t\bar{t}$ Events
Look at the P_T distribution of our softest τ

Low energy τ's are an enormous challenge for the detectors

Also, get more events for large ΔM

Slope of P_T distribution contains ΔM Information

Slope of P_T distribution is largely unaffected by Gluino Mass
More Observables...

- Look at the mass of the $\tau^+\tau^-$ in the events.
- Can use the same sample to subtract off the non-χ_2 backgrounds \Rightarrow Clean peak!

Larger ΔM:
- More events
- Larger mass peak

Clean peak
Even for low ΔM
Discovery Luminosity

 Depends on the number of observable events and the sparticle masses

![Graph 1](image1.png)
\(\Delta M = 850 \text{ GeV} \)

- Above \(\sim 5 \) GeV get more events as more events pass kinematic cuts

![Graph 2](image2.png)
\(\Delta M = 9 \text{ GeV} \)

- Fewer events as the production Cross Section drops

\(N_{\text{OS-LS}} / \text{fb}^{-1} \)

- 20% Error on Fake Rate
A small ΔM can be detected in first few years of LHC

\sim100 Events
Outline

• Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{\text{stau}} - M_{\text{LSP}}$

• Identifying events at the LHC
 - Discovery and Experimental Observables

• Measurements of
 - Particle masses: ΔM, M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{\text{LSP}}h^2$

• Conclusions
What are we trying to measure?

Our mSUGRA model (described by m_0 and $m_{1/2}$) can be written, equivalently, by

$$M_{\tilde{g}}$$ and $$\Delta M = M_{\tilde{\tau}} - M_{\tilde{\chi}^0_1}$$

The Universality relations "determine" the other mass values

$$M_{\tilde{\chi}^0_2} \sim 0.32 M_{\tilde{g}}$$ and $$M_{\tilde{\chi}^0_1} \sim 0.17 M_{\tilde{g}}$$
Measuring the SUSY Masses

For our sample of events we can make three measurements

1. Number of events
2. Slope of the P_T distribution of the softest τ
3. The peak of the $M_{\tau\tau}$ distribution

Since we are using 3 variables, we can measure three things

Since A, $\tan\beta$ and $\text{sign}(\mu)$ don't change the phenomenology much (for large $\tan\beta$) we choose to use our three variables to determine ΔM, M_{gluino} and the χ_2 Mass
Measure ΔM and the Gluino Mass

- The slope of the P_T distribution of the τ's only depends on the ΔM.
- The event rate depends on both the Gluino mass and ΔM.
- Can make a simultaneous measurement.

An important measurement without Universality assumptions!

Results for ~ 300 events (10 fb$^{-1}$ depending on the Analysis).
Add in the Peak of $M_{\tau\tau}$

$$M_{\tau\tau} \propto M_{\tilde{\chi}_2^0} \left(1 - \frac{M_{\tau_1}^2}{M_{\tilde{\chi}_2^0}^2}\right) \left(1 - \frac{M_{\tilde{\chi}_1^0}^2}{M_{\tau_1}^2}\right)$$

As the neutralino masses rise, the $M_{\tau\tau}$ peak rises.

Average of Fake Rate Variation

Statistical Uncertainty

$M_0 = 850 \text{ GeV}$
$L = 30 \text{ fb}^{-1}$
Are we in a Universality World?

Use all 3 observables to make simultaneous measurements.

Compare measured $M_{\tilde{\chi}^0_2}$ to $M_{\text{Universality}}$ from $\Delta M, M_{\tilde{g}}$

Only Assume $M_{\tilde{\chi}^0_0} \sim 0.17 M_{\tilde{g}}$

~ 15 GeV or $\sim 3\%$

5/17/2007

Dave Toback et. al., Texas A&M University
What if we Assume the Universality Relations?

Use Events, $M_{\tau\tau}$ and Slope to measure ΔM, $M_{\tilde{g}}$ and $M_{\tilde{\chi}_2^0}$ simultaneously

(Results for $M_{\tilde{g}} = 830$ GeV, $\Delta M = 10.6$ GeV)

Results for \sim300 events (10 fb$^{-1}$ depending on the Analysis)

\sim15 GeV or \sim2%

\sim0.5 GeV or \sim5%

Analysis only assumes $M_{\tilde{\chi}_1^0} \sim 0.17 M_{\tilde{g}}$

Analysis assumes $M_{\tilde{\chi}_2^0} \sim 0.32 M_{\tilde{g}}$

and $M_{\tilde{\chi}_1^0} \sim 0.17 M_{\tilde{g}}$
Outline

• Supersymmetry and the Co-annihilation region
 - The important experimental constraints
 - A Smoking Gun: Small $\Delta M = M_{\text{stau}} - M_{\text{LSP}}$

• Identifying events at the LHC
 - Discovery and Experimental Observables

• Measurements of
 - Particle masses: ΔM, M_{Gluino} & M_{χ^2}
 - Supersymmetry parameters: M_0 and $M_{1/2}$
 - Cosmological implications: $\Omega_{\text{LSP}} h^2$

• Conclusions
Infer m_0 and $m_{1/2}$

Use ΔM and M_{gluino} to measure m_0 and $m_{1/2}$

Results for $M_{\tilde{g}} = 830$ GeV
$\Delta M = 10.6$ GeV

Assume Universality

$\Delta M \approx 5$ GeV or $\sigma \approx 2\%$

≈ 10 GeV or $\sigma \approx 3\%$

5/17/2007
Dave Toback et. al., Texas A&M University
Cosmology Measurements

With the same assumptions we can use \(\Delta M, \tilde{M}_\chi \) to measure \(\Omega_{\chi_1} h^2 \) to 7\%
(Compare to WMAP which is 5\%)

\[
|\frac{\delta \Omega_{\chi_1} h^2}{\Omega_{\chi_1} h^2}| = 5\% \\
|\frac{\delta \Omega_{\chi_1} h^2}{\Omega_{\chi_1} h^2}| = 10\% \\
A_0 = 0, \tan\beta = 40 \\
sign(\mu) = 1
\]
Conclusions

• If the co-annihilation region is realized in nature it provides a natural Smoking Gun

• The LHC should be able to uncover the striking small-ΔM signature with ~ 10 fb$^{-1}$ of data in multi-τ final states and make high quality measurements with the first few years of running

• The future is bright for Particle Physics and Cosmology as these precision measurements should allow us to measure the ΔM without Universality assumptions and make comparisons to the precision WMAP data with only minor assumptions
Some caveats
Aside...

We note that while the analysis here was done with mSUGRA, a similar analysis is possible for any SUGRA models (most of which possess a co-annihilation region) provided the production of neutralinos is not suppressed.