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Background, Motivation, and Goals:
The Standard Model

The Standard Model describes
the fundamental particles and
how they interact with each
other
4 Fundamental Forces
Bosons:

Gauge bosons (force
carriers/mediators): Gluons,
W , Z±, Photon
Scalar: Higgs

6 Leptons
6 Quarks
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Background, Motivation, and Goals:
The Standard Model

Agrees extraordinarily with
experiment, but not complete

A Grand Unified
Theory/Gravitons?
Matter/Anti-Matter
Asymmetry in the
Universe/CP Violation?
Dark Matter?
Why Three Generations?

Want to find disagreements in
experiments (new physics?)
Measuring asymmetries and
comparing to SM predictions
may lead us to discovering some
of these answers
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Background, Motivation, and Goals:
Asymmetries at Colliders

Measurements of asymmetries have long been studied at colliders (i.e.
the Tevatron and the LHC)
Can sensitively probe weak properties of particles (i.e. the effective
weak mixing angle) through the collisions that take place

Drell-Yan Process in a
Hadron Collision:

In a Drell–Yan process:
quark/anti-quark from colliding hadrons
annihilate
create either virtual γ or Z boson which
decays into lepton/anti-lepton pair

These processes can produce
forward–backward asymmetry
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Background, Motivation, and Goals:
Asymmetries at Colliders

http://arxiv.org/pdf/1406.1798v3.pdf

SM NLO predicts an asymmetry in
the tt̄ production AFB

Due to interference among
diagrams, and large EW corrections
and QCD corrections of order α3

s

terms which are odd under the
interchange of t and t̄
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Background, Motivation, and Goals:
Asymmetries at Colliders
Example Feynman Diagrams of tt̄ production via

hypothetical BSM particles: axigluons (a), and Z ′

bosons (b). However, some measurements made
were found to disagree significantly
with SM NLO predictions, which
indicated a smoking gun for possible
new physicsa

BSM scenarios can help account for
the observed asymmetry, for
example axigluons (s-channel) and
Z’ bosons (t-channel)b

aJ. H. Kuhn and G. Rodrigo, Phys. Rev. D 59 (1999) 054017
bHong, Ziqing. “Forward–Backward Asymmetry of Top Quark Pair Production at the Fermilab

Tevatron.” Thesis. Texas A&M University, 2015. Print.
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Background, Motivation, and Goals:
Measuring Asymmetries

In general, we define an asymmetry with the partial cross sections, σ1
and σ2, over two complementary kinematic or geometric regions:

A ≡ σ1 − σ2

σ1 + σ2

Most experimental techniques
measure an asymmetry in a
restricted region (due to
geometric constraints of the
detector), Avisible

Therefore extrapolating to the
inclusive (physical) asymmetry
Ainclusive is then necessary

CDF Detector:
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Background, Motivation, and Goals:
Extrapolating Asymmetries

Various extrapolation techniques exist
Constant additive factor: C = Ainclusive − Avisible

Constant multiplicative factor: R = Avisible/Ainclusive

Matrix unfolding for when the situation is complicated

Using a constant multiplicative factor, R can be advantageous for
certain analyses

It is used at the Tevatron for tt̄ leptonic asymmetry measurementsa

Appears not to vary significantly with the absolute value of the
expected inclusive asymmetry

a V. M. Abazov, et al., D0 Collaboration, Phys. Rev. D 88 (2013) 112002
T. Aaltonen, et al., CDF Collaboration, Phys. Rev. D 88 (2013) 072003
T. Aaltonen, et al., CDF Collaboration, Phys. Rev. Lett. 111 (2013) 182002
T. Aaltonen, et al., CDF Collaboration, Phys. Rev. Lett. 113 (2014) 042001
T. Aaltonen, et al., CDF Collaboration, Phys. Rev. D 89 (2014) 072001

Katrina Colletti (Texas A&M) Extrapolation Technique Pitfalls August 11, 2016 8 / 20



Background, Motivation, and Goals:
Extrapolating Asymmetries

Monte Carlo (MC) simulation is typically used to estimate R

Unfortunately only a single pseudo-experiment (due to the
computationally expensive nature of the cross-sections) is typically run
and used to make the estimation of R

Understanding the uncertainty on that estimation is important and
can lead to misleading results if not properly accounted for

Since measurements that disagree with SM NLO predictions are of
particular interest (as they can be a signal of new physics),
guaranteeing measurement techniques are accurate and error
measurements are correct is an important task
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Background, Motivation, and Goals

We expect to need higher statistics as the simulated asymmetry gets
smaller, but we need to be able to quantify how much statistics we
need for a given asymmetry to be confident in measurements

This study aims to:
point out an important pitfall that analyzers can fall into when using
this particular technique,

understand what causes the pitfall, and quantify how one can
confidently avoid it

Specifically, we want to understand two things:
Whether we can confidently and reliably use a constant R to perform
the extrapolation, and

What the required MC sample size is to be able to reliably estimate R
for a given asymmetry value
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Monte Carlo Study

To simplify the discussion we integrate over all variables except one, x ,
so we can define the visible and inclusive asymmetries as:

σvisible
1 =

∫ xvisible

0
dx

dσ

dx
and σvisible

2 =

∫ 0

−xvisible
dx

dσ

dx

σinclusive
1 =

∫ ∞
0

dx
dσ

dx
and σinclusive

2 =

∫ 0

−∞
dx

dσ

dx

Classic Example: forward–backward asymmetry

-Positive Beam Direction.
..........
..........-

particle
�

particle
�
���

Outgoing particle momentum

θCM

η = − ln(tan
( θ

2 )
)

For example, we can say we
integrate over all variables
except the pseudo-rapidity,
η, of a particle, which gives
rise to a forward–backward
asymmetry
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Monte Carlo Study

We use a simple single Gaussian differential cross section model2 with
a mean, µ ∝ A, and unit width
Below, we show a single pseudo-experiment (PE) for two different
values of µ, each with number of events N = 106:

x
6− 4.5− 3− 1.5− 0 1.5 3 4.5 6

 (
ar

bi
tr

ar
y 

un
its

)
x

/dσd

 = 0.0µ
 = 0.5µ – We choose xvisible = 1.5 which is

close to typical values seen in tt̄
measurements at the Tevatron

– As a benchmark, µ = 0.1
corresponds to Ainclusive ≈ 8%
which is also typically seen

2It has been shown that the leptonic differential cross section is well approximated as the sum of two Gaussians
with a common mean, and the multiplicative extrapolation works in this case.
Z. Hong, R. Edgar, S. Henry, D. Toback, J. S. Wilson, and D. Amidei, Phys. Rev. D 90 (2014) 014040.
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Monte Carlo Study

Measure Ainclusive, Avisible, and R for each of a large number of PE’s
With many PEs (NPE), we get distributions for Ainclusive, Avisible, and
R :
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This looks like it should work well – R has a small RMS and looks very
Gaussian
But what happens to the R distribution as we vary N and µ?
With large enough sample size, measurements of R are very accurate
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Monte Carlo Study:
Pathological Case to Examine the Low Statistics Simulation

We now study the R distributions that arise for a fixed value of µ, but
with large and small values of N
This corresponds to high statistics/reliable measurements and low
statistics/unreliable measurements respectively
As N decreases, measurement of R becomes unreliable, and may no
longer correctly reproduce Ainclusive from Avisible

R
1.5− 1− 0.5− 0 0.5 1 1.5P

se
ud
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0.
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210

310

410

510  = 0.1µ
5 = 10N
3 = 10N

Blue data represents a reliable
measurement of R with a well
understood uncertainty
Red data represents an
unreliable/pathological
measurement
This transition is observed for all
values of µ
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Monte Carlo Study:
Quantifying the Transition for Varying µ

How many events, Nthresh, are needed to give a reliable measurement
of R?

N
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-5 = 10µ -7 = 10µ -9 = 10µ

threshf

We define f as the fraction of
pseudo-experiments with
R < 0.5
This should be many σ from the
mean, so we require f ≈ 0
To examine/quantify the
behavior for reliable
measurements, we define a
threshold value, fthresh, and
examine the relationship
between Nthresh and µ
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Monte Carlo Study:
Results

µ
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We find that it can take a
much-larger-than-expected
sample size to reliably
measure R , especially for very
small µ (or equivalently A)

Nthresh rises as 1
µ2

(
or 1

A2

)
We also find that when N is
large enough for reliable
measurements, R is measured
to be close to constant for all
values of µ
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Closed Form Statistical Validation:
Examining Why MC Methods Break Down for Small N

“Enough” Events in Simulation –
Reliable Measurements
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“Not Enough” Events in Simulation –
Unreliable Measurements
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Require Ainclusive (denominator of R) to be greater than at least 1 σ
away from 0
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Closed Form Statistical Validation:
Number of Events Required for Reliable Measurements

We use statistics to determine how many events, Nthresh, are required
for the mean value of Ainclusive to be at least 1 σ away from 0
In equation form, this condition can be written as:

Ainclusive ≥ σAinclusive

We are able to find Nthresh as a function of µ for our single Gaussian
model (calculation in backup slides):

Nthresh ≥ 2 ·

(
1 + erf

( µ√
2

))
erf
( µ√

2

)2
Some limiting cases:

As µ→ 0, Nthresh →∞
erf
(

µ√
2

)
≈
√

2
π µ for small µ, so we find that Nthresh ∝ 1

µ2 which is
precisely what we just saw in the MC study
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Closed Form Numerical Validation:
Is R constant?

Examining the behavior of R as a function of µ analytically is
straightforward for the single Gaussian model

We set σ = 1.0 and use the visible region |x | < 1.5

For large values of µ (i.e 0.1), R rises by 0.04% relative to R(µ = 0)

Recall:

Ainclusive =
σinclusive

1 − σinclusive
2

σinclusive
1 + σinclusive

2

Avisible =
σvisible

1 − σvisible
2

σvisible
1 + σvisible

2

R =
Avisible

Ainclusive

where σ ≡ Gaus(µ, σ = 1.0)
µ

0.1− 0.05− 0 0.05 0.1

R

0.776

0.778

0.78

0.782

0.784

(0. , 0.7795)
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Conclusions

We have studied the multiplicative extrapolation of Avisible to Ainclusive

for the single Gaussian model, and while a custom study would be
needed for any non-Gaussian physics distribution, we have observed
that a linear extrapolation can be used in this and other similar cases

While MC methods work reliably (even for small A), they can require
much larger sample sizes than expected, rising as 1

A2

Our results have the potential to be applied to many different
asymmetry measurements in collider experiments, and have already
been useful at the Tevatron for the tt̄ forward-backward asymmetry
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Backups:
The Cauchy Distribution3

A distribution of the ratio of two independent Gaussian variables

Mean and RMS are actually undefined; though mode and median are
well defined

Ainclusive and Avisible are approximately Gaussian, thus as the mean of
the Ainclusive distribution approaches 0, R begins approximating a
Cauchy distribution

3A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, 2nd ed., New York: McGraw-Hill, 1984
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Backups:
The Statistical Solution Calculation

We need enough statistics such that Ainclusive , the denominator of R , is
more than 1 sigma away from 0 (we will set it to be k , where k will be
determined later). In other words, we want to know how many events it
takes in a pseudo-experiment to ensure the mean of the full asymmetry will
be k standard-deviations away from zero.
To do this we start with the equation

σAinclusive =
Ainclusive

k
(1)

where σAinclusive is the variation (or uncertainty) of the measured value of
Ainclusive . We will find both σAinclusive and Ainclusive as functions of N and µ
and substitute them into Eq. 1 to get the functional relation between N
and µ for “good statistics”.
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Backups:
The Statistical Solution Calculation

We begin with our definition of asymmetry, where N+ ≡ σinclusive
1 and

N− ≡ σinclusive
2 as on Slide 5, and thus N = N+ + N− is the total number

of events in the original Gaussian distribution. Using this information:

Ainclusive =
N+ − N−
N+ + N−

=
2N+ − N

N
. (2)

We note that since our distributions are Gaussian, we can write N+ in
terms of N and µ, with the relation given by

N+ =
N√
2π

∫ ∞
0

dx e−(x−µ)2/2

=
N

2

(
erf
( µ√

2

)
+ 1

)
(3)
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Backups:
The Statistical Solution Calculation

Plugging this in to Eq. 2 and reducing, we get

Ainclusive =

�2�N
�2

(
erf
(
µ√
2

)
+ �1

)
−��N

��N

= erf
( µ√

2

)
(4)

We next find σAinclusive by beginning with the definition given in Bevington
(92) applied to our problem,

σAinclusive =
(∂Ainclusive

∂N+

)
σN+ +

(∂Ainclusive

∂N

)
σN . (5)

Taking a simple derivative of Ainclusive from Eq. 2 gives us(∂Ainclusive

∂N+

)
=

2
N

(6)
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Backups:
The Statistical Solution Calculation

To be consistent with the previous study, we fix N and allow N+ to vary.
This means that σN = 0, and from simple statistics

σN+ =
√
N+ (7)

Plugging Eqs. 6 and 7 into Eq. 5, we get

σAinclusive =
2
N
·
√

N+. (8)

Plugging Eq. 3 into this, we get

σAinclusive =
2
N
·

√√√√N

2

(
erf
( µ√

2

)
+ 1

)

=

√
2
N
·

√√√√(1 + erf
( µ√

2

))
(9)
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Backups:
The Statistical Solution Calculation

Finally, plugging Eqs. 4 and 9 back into Eq. 1 gives us√
2
N
·

√√√√(1 + erf
( µ√

2

))
=

erf( µ√
2

)

k
, (10)

and solving for N, we get

N =

2k2

(
1 + erf

(
µ√
2

))
erf
(
µ√
2

)2 (11)

This is, as we set out to solve for, the number of events it takes per
pseudo-experiment to ensure the mean of the full asymmetry will be k
standard-deviations away from zero, and thus give good statistics.
Discussion of the implication of this result is included in the main slides.
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Backups:
Closed Form Numerical Solution Gaussian Functions

Ainclusive =

1√
2πσ

∫ ∞
0 dx

[
exp(− (x−µ)2

2σ2 )− exp(− (−x−µ)2

2σ2 )
]

1√
2πσ

∫ ∞
0 dx

[
exp(− (x−µ)2

2σ2 ) + exp(− (−x−µ)2

2σ2 )
]

Avisible =

1√
2πσ

∫ 1.5

0 dx
[
exp(− (x−µ)2

2σ2 )− exp(− (−x−µ)2

2σ2 )
]

1√
2πσ

∫ 1.5

0 dx
[
exp(− (x−µ)2

2σ2 ) + exp(− (−x−µ)2

2σ2 )
]

R =
Avisible

Ainclusive
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