Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ in the Two-Lepton Final State at CDF

Ziqing Hong

Preliminary Examination Texas A&M University March 26, 2014

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- Tevatron and CDF
- $t \overline{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **6** A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

Table of contents

Introduction

- Introduction
 - The Standard Model and the Top Quark
 - *A*^{*tt*}_{FB}: Smoking gun for new physics?
 - Searching for more evidence
- 2 Tevatron and CDF
- $3 t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

The Standard Model - Top Quark

Top-Quark Pair at Tevatron

Top-quark pair at Tevatron

- $p\bar{p}$ collision at Tevatron
- CP even initial state
- № 85% quark annihilation, 15% gluon fusion
 - Decent amount of $t\overline{t}$ produced at Tevatron
 - Study events with certain properties to learn how particles interact

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- $\mathbf{3} t \overline{t} \rightarrow \mathsf{dilepton}$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

p (q, g)

A^{tt}_{FB} at Tevatron

- What else can we learn about $t\bar{t}$ produced at Tevatron?
- Angular distribution!

• Simplest observable:

forward-backward asymmetry (A_{FB})

- \overline{p} (\overline{q} , g)• Does top quark prefer proton direction or the opposite?
 - Measure rapidity difference between top and anti-top, Δy
 - Define A_{FB} of $t\bar{t}$ production:

$$\mathcal{A}_{\mathsf{FB}}^{tar{t}} = rac{\mathcal{N}(\Delta y > 0) - \mathcal{N}(\Delta y < 0)}{\mathcal{N}(\Delta y > 0) + \mathcal{N}(\Delta y < 0)}$$

 $y = \frac{1}{2} \ln \frac{E + p_z}{F}$

• What does standard model (SM) predicts?

- No preference in leading order diagram
- At next-to-leading order (NLO): top quark slightly prefers proton direction (forward)
 →Interference among diagrams
- A^{tt̄}_{FB}(NLO SM) = 0.088 ± 0.006 (PRD 86,034026 (2012))

9 / 48

 A_{FR}^{tt} at Tevatron

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

- Previous experimental result?
 - CDF: $A_{FB}^{t\bar{t}} = 0.164 \pm 0.047$ (PRD **87**, 092002 (2013))
 - D0: $A_{FB}^{t\bar{t}} = 0.196 \pm 0.065$ (PRD **84**, 112005 (2011))
- Measured results from CDF and D0 in tension with SM prediction
- $A_{FB}^{t\bar{t}}$ vs. $m_{t\bar{t}}$ deviates from SM prediction
- Anomalously large $A_{\text{FB}}^{tt} \rightarrow$ Smoking gun for new physics?

$A_{\rm FB}^{t\bar{t}}$ at Tevatron

Possible alternative hypotheses?

Models beyond the SM can predict large $A_{FB}^{t\bar{t}}$

- Axigluons
- Flavor-changing Z' boson
- Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions

Table of contents

Introduction

- The Standard Model and the Top Quark
 A^{tt̄}_{EB}: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- $3 t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- Remaining pieces of the puzzle
 - A_{FB}^{tt} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

 $A_{\rm FR}^{t\bar{t}}$ at Tevatron

How to look for more evidence for/against new physics?

- Measure $A_{FB}^{t\bar{t}}$ more precisely?
- Other related observables?

Top-Quark Pair Decay Modes • How does top quark decay?

- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:

Top-Quark Pair Decay Modes • How does top quark decay?

- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$

Top-Quark Pair Decay Modes

- How does top quark decay?
- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton providing additional handle

Top-Quark Pair Decay Modes

- How does top quark decay?
- t
 ightarrow Wb almost 100% of time
- Three types of final states based on *W* decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton providing additional handle
 - Dilepton ← Focus of this talk
 - Small branching fraction
 - Leptons precisely measured
 - Two ν 's, hard to reconstruct $t\bar{t}$

Adding more data: A_{FB}^{tt} in dilepton

- More evidence for or against new physics?
- Previous measurement based on lepton+jets final state
- Can measure $A_{\text{FB}}^{t\bar{t}}$ in dilepton

- Need to reconstruct 4-momentums of $t\bar{t} \rightarrow$ Tough job in dilepton
- Details in later slides

Another observable to help answer the question

• Other possible hints?

- Two equally important observables with leptons
- Leptonic A_{FB}

$$A_{\mathsf{FB}}^{\prime} = \frac{N(q_{l}\eta_{l} > 0) - N(q_{l}\eta_{l} < 0)}{N(q_{l}\eta_{l} > 0) + N(q_{l}\eta_{l} < 0)}$$

- Also lepton pair A_{FB} defined with lepton η difference, only in dilepton
 Why leptons?
 - Lepton angles precisely measured
 - Tend to follow direction of parent tops

$A'_{\rm FB}$ at Tevatron

- NLO SM prediction: $A'_{FB} = 0.038 \pm 0.003$
- Prediction with new physics?
- Based on CDF $A_{FB}^{t\bar{t}}$ result (0.16 ± 0.05): 0.070 < A_{FB}^{\prime} < 0.076
- New physics models in certain parameter space allow for large $A_{FB}^{t\bar{t}}$ (like observed value), but very large range (positive or negative) of A_{FB}^{l}
- Independent measurements of $A_{FB}^{t\bar{t}}$ and A_{FB}' are crucial


```
Example:

Axigluon model

(m = 200 GeV/c<sup>2</sup>, \Gamma = 50 GeV)

\rightarrow A_{FB}^{t\bar{t}} = 0.12

-0.06 < A_{FB}^{l} < 0.15

depending on handness of

couplings

(PRD 87,034039 (2013))
```

$A'_{\rm FB}$ at Tevatron

• Measurement of A'_{FB} in lepton+jets

$$A_{FB}^{\prime} = 0.094 \pm 0.024 ({\rm stat})^{+0.022}_{-0.017} ({\rm syst})$$

- Large asymmetry holds in A'_{FB}
- A^{tt̄}_{FB} and A^l_{FB} measurement in lepton+jets published (by large group at Michigan)
- This thesis: confirm or deny this anomaly large asymmetry with dilepton

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- Tevatron and CDF
- $3 t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

Tevatron and CDF

Tevatron

FERMILAB'S ACCELERATOR CHAIN

• *pp* collider

- Center-of-mass energy 1.96 TeV
- Run II delivered 12fb⁻¹
- \bullet Acquired $10 {\rm fb}^{-1}$ by CDF

Tevatron and CDF

- CDF
 - General purpose detector with
 - Solenoid (1.4 T magnetic field)
 - Tracking system
 - Calorimeter system
 - Muon detectors
 - Coverage in $t\bar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - Muon $~:~ |\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

Table of contents

Introduction

- The Standard Model and the Top Quark
- *A*^{*tt*}_{FB}: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- (3) $t\overline{t}
 ightarrow$ dilepton
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

 $tar{t}
ightarrow {\sf dilepton}$

- A_{FB} measurement in lepton+jets done
- Go after the next important final state $t \overline{t}
 ightarrow$ dilepton

 $t \overline{t}
ightarrow$ dilepton Event selection

• Need a sample enriched by $t\bar{t}$ events:

$t \overline{t} ightarrow { m dilepton}$ Event selection

$t \overline{t} ightarrow { m dilepton}$ Event selection

- Need a sample enriched by $t\bar{t}$ events:
 - Two opposite charged leptons
 - At least two jets -

$t \overline{t} ightarrow { m dilepton}$ Event selection

$t\overline{t} ightarrow dilepton$ Event selection

- Need a sample enriched by $t\bar{t}$ events:
 - Two opposite charged leptons
 - At least two jets
 - $\not\!\!\!E_T > 25~{
 m GeV}$
- Detailed event selection criteria in backup

$t\bar{t} \rightarrow dilepton$

Signal and background modeling

• Signal modeling:

- Prediction with POWHEG MC NLO SM with QCD correction
- Background modeling:
 - Diboson production (WW, WZ, ZZ, Wγ)
 MC prediction
 - Z/γ^* MC prediction with correction from data
 - W+jets
 - Data based
 - *t* \overline{t} non-dilepton
 - Prediction with POWHEG MC
- Agreement is excellent

Source	Events
Diboson	$31.4{\pm}5.9$
Z/γ^*	$50.5{\pm}6.2$
W+jets fakes	64±17
$t\overline{t}$ non-dilepton	$14.6{\pm}0.8$
Total background	160±21
$t\overline{t}~(\sigma=$ 7.4 pb)	408±19
Total SM expectation	568±40
Observed	569
Alternative Signal Modeling

- Simulate $t\bar{t}$ in various scenarios
 - Two LO SM sample (PYTHIA & PYTHIA)
 - NLO SM sample (POWHEG)
 - Benchmark beyond-SM model w/ axigluon
- Span large range of A'_{FB} and A''_{FB}

Model	$A'_{\rm FB}$ (Parton Level)	$A_{\rm FB}^{\prime\prime}$ (Parton Level)	Description
Avil	-0.063(2)	-0.092(3)	Tree-level left-handed axigluon
AXIL			$\left(m=200~{\rm GeV/c^2}\text{, }\Gamma=50~{\rm GeV}\right)$
AxiR	0.151(2)	0.218(3)	Tree-level right-handed axigluon
			(m = 200 ${\rm GeV/c^2},~\Gamma=50~{\rm GeV})$
Axi0	0.050(2)	0.066(3)	Tree-level unpolarized axigluon
			(m = 200 ${\rm GeV/c^2},~\Gamma=50~{\rm GeV})$
ALPGEN	0.003(1)	0.003(2)	Tree-level Standard Model
PYTHIA	0.000(1)	0.001(1)	LO Standard Model
POWHEG	0.024(1)	0.030(1)	NLO Standard Model
Theory	0.038(3)	0.048(4)	NLO SM calculation
			(PRD 86 034026 (2012))

 $t\bar{t} \rightarrow dilepton$

- Hard to reconstruct of 4-momentum of $t\bar{t}$ in dilepton
- Measure leptonic A_{FB} first
- Continue with the full $A_{FB}^{t\bar{t}}$ if large asymmetry holds in leptonic A_{FB}

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- $t \bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

A[/]_{FB} Measurement Methodology

- $A_{FB}^{\prime} = 0.094_{-0.029}^{+0.032}$ at CDF in lepton+jets
- $\bullet~1.9\sigma$ larger than SM
- Measurement based on decomposition of *q*_lη_l spectrum into symmetric and asymmetric components
- Empirical determined functional form for asymmetric component (differential asymmetry)

$$A_{\mathsf{FB}}^{\prime}(q_{l}\eta_{l})=a\cdot anh\left(rac{1}{2}q_{l}\eta_{l}
ight)$$

• Details in following slides

PRD 88 072003 (2013)

A^{*l*}_{FB} Methodology - Introduction

 $q_l \eta_l$ spectrum

- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
- No acceptance beyond $|q_l\eta_l|=2$
- Need a clever way to measure the subtle difference

ALD measurement methodology

$A'_{\rm FB}$ Methodology - Introduction

Decomposition of *q*_lη_l spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_l\eta_l) = rac{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}{2}; \mathcal{A}(q_l\eta_l) = rac{\mathcal{N}(q_l\eta_l) - \mathcal{N}(-q_l\eta_l)}{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}$$

A'_{FB} measurement methodology

A[/]_{FB} Methodology - Introduction

Decomposition of *q_lη_l* spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_l\eta_l) = \frac{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}{2}; \mathcal{A}(q_l\eta_l) = \frac{\mathcal{N}(q_l\eta_l) - \mathcal{N}(-q_l\eta_l)}{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}$$

• $S(q_l\eta_l)$ consistent among models

A'_FB measurement methodology

A[/]_{FB} Methodology - Introduction

 Decomposition of *q_lη_l* spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_l\eta_l) = \frac{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}{2}; \mathcal{A}(q_l\eta_l) = \frac{\mathcal{N}(q_l\eta_l) - \mathcal{N}(-q_l\eta_l)}{\mathcal{N}(q_l\eta_l) + \mathcal{N}(-q_l\eta_l)}$$

A_{FB} measurement methodology

$A'_{\rm FB}$ Methodology - Introduction

A^I_{FB} rewritten as

$$\mathcal{A}_{\mathsf{FB}}^{\prime} = rac{\int_{0}^{\infty} \mathrm{d} q_{l} \eta_{l} \mathcal{A}(q_{l} \eta_{l}) \mathcal{S}(q_{l} \eta_{l})}{\int_{0}^{\infty} \mathrm{d} q_{l}^{\prime} \eta_{l}^{\prime} \mathcal{S}(q_{l}^{\prime} \eta_{l}^{\prime})}$$

Methodology works well

Pheno paper on this topic about to be submitted to PRD

On the Forward-Backward Asymmetry of Leptonic Decays of $t\bar{t}$ at the Fermilab Tevatron (Z. Hong *et. al.*)

• Details in backup slides

A'_{FB} Methodology with Detector Response

• Does detector response affect the measurement?

A'_{FB} Methodology with Detector Response

- Detector response mostly cancels out in $\mathcal{A}(q_{I}\eta_{I})$
- Measurement strategy:
 Fit A(q_Iη_I) with a · tanh (¹/₂q_Iη_I)
 Obtain S(q_Iη_I) from POWHEG simulation at parton-level
 Calculate A^I_{FB} with A & S above
- Correct for detector response and extrapolate to inclusive A^l_{FB} simultaneously
- Strategy validated with signal samples

A measurement methodology

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- (3) $t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **6** A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

$A'_{\rm FB}$ in dilepton

- Measure A'_{FB} with CDF full dataset in dilepton (9.1 ${
 m fb}^{-1}$)
 - $$\begin{split} A_{\mathsf{FB}}' &= 0.072 \pm 0.052(\mathsf{stat}) \pm 0.030(\mathsf{syst}) \\ &= 0.072 \pm 0.060 \end{split}$$
 - Cf. $A^{\prime}_{FB}(SM,NLO)=0.038\pm0.003$
- Dominant uncertainty is statistical
- Table of systematic uncertainty in backup
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM

Part of thesis result

Part of thesis result

- Measure A[#]_{FB} with the same method
 - $$\begin{split} A_{\mathsf{FB}}^{\prime\prime} &= 0.076 \pm 0.072 (\mathsf{stat}) \pm 0.039 (\mathsf{syst}) \\ &= 0.076 \pm 0.081 \end{split}$$
 - Cf. $A'_{FB}(SM,NLO) = 0.048 \pm 0.004$
- Dominant uncertainty is statistical
- Result consistent with SM

$A'_{\rm FB}$ combination at CDF

Combined A[/]_{FB} measurements at CDF

- Based on *best linear unbiased estimator* (BLUE)
- Result is 2σ larger than NLO SM prediction:

 $A_{\rm FB}^{\prime} = 0.090^{+0.028}_{-0.026}$

Paper in 2nd collaboration review.
 To be submitted to PRL.

Part of thesis result

Table of contents

Introduction

- The Standard Model and the Top Quark
- *A*^{*tt*}_{FB}: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- $\mathbf{3} t \overline{t} \rightarrow \mathsf{dilepton}$
- A'_{FB} measurement methodology
- A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

$t\bar{t}$ Reconstruction in dilepton

- Need to reconstruct 4-momentum of top/anti-top quarks
- Known information:
 - 4-momentum of leptons \rightarrow precisely
 - 4-momentum of jets \rightarrow not so well Ambiguity between *b* and \bar{b}

 - Constraints on m_W & m_t
- 6 unknowns with 6 constraints Tough job!

$t\bar{t}$ Reconstruction in dilepton

- Basic idea straight forward: momentum-energy conservation
- Technically:

 - Fit for most likely solution
- Preliminary performance
- Reconstruct majority of top rapidities within 0.5
- Tails constituted of events with
 - Jet poorly measured
 - Wrong assignment of $b-\overline{b}$
 - Fitter picks a wrong solution

$A_{\text{FB}}^{t\bar{t}}$ Unfolding

• $A_{FB}^{t\bar{t}}$ measured in detector biased

- Limited detector coverage
- Imperfect detector acceptance
- Finite detector resolution
- Biases caused by $t\overline{t}$ reconstruction
- Unfolding needed for inclusive parton-level $A_{\rm FB}^{t\bar{t}}$
- Two steps procedure
 - Inversion of detector response matrix based on *single value decomposition* and certain regularization condition
 - Bin-by-bin acceptance correction

$A_{\text{FB}}^{t\bar{t}}$ CDF combination

Once A^{tt̄}_{FB} in dilepton complete, want to combine this with previous measurement in lepton+jets
 A^{tt̄}_{FB} measurement at CDF

Table of contents

Introduction

- The Standard Model and the Top Quark
- *A*^{*tt*}_{FB}: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- 3 $t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

Prospect of Tevatron combination

- Measurement of $A_{\rm FB}^{\prime}$ and $A_{\rm FB}^{\prime\prime}$ done, $A_{\rm FB}^{t\bar{t}}$ in progress at CDF
- Corresponding measurements at D0 coming out
 - \bullet Results from D0 are smaller, consistent with both ours and SM
- Hoping to combine measurements at CDF and D0 for Tevatron legacy results

Table of contents

Introduction

- The Standard Model and the Top Quark
- $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
- Searching for more evidence
- 2 Tevatron and CDF
- 3 $t\bar{t} \rightarrow dilepton$
- A'_{FB} measurement methodology
- **5** A'_{FB} in dilepton and combination at CDF
- 6 Remaining pieces of the puzzle
 - A^{tt}_{FB} in dilepton and CDF combination
 - Prospect of Tevatron combination

Conclusions

- The A_{FB} of top quarks at Tevatron continue to be an exciting measurement, and leptonic decays provide an important complementary handle
- Working on a full analysis of $A_{FB}^{t\bar{t}}$, A_{FB}^{\prime} and $A_{FB}^{\prime\prime}$ Crucial to probe the production and decay of $t\bar{t}$
- \bullet Combined $A_{\rm FB}^{\prime}$ measurement at CDF shows 2σ deviation from NLO SM

Paper in 2nd collaboration reading, for submission to PRL

- Pheno paper about methodology to be submitted to PRD
- Measurement of $A_{FB}^{t\bar{t}}$ in progress, then CDF combination
- Looking to the future for Tevatron combination of A_{FB}^{\prime} , $A_{FB}^{\prime\prime}$ and $A_{FB}^{t\bar{t}}$

Backup slides

Backup Slides

$t \overline{t} ightarrow$ dilepton event selection criteria

3aseline Cuts	Exactly two leptons with $E_{\rm T}>20~{\rm GeV}$ and passing standard identification requirements with following modifications		
	-COT radius exit $>$ 140 cm for CMIO		
	$-\chi^2/ndf < 2.3$ for muon tracks		
	At least one trigger lepton		
	At least one tight and isolated lepton		
	At most one lepton can be loose and/or non-isolated		
	$\not\!\!\!E_T > 25 \text{ GeV}$, but $\not\!\!\!E_T > 50 \text{ GeV}$ when there is any lepton or jet within 20° of the direction of $\not\!\!\!E_T$		
ш		MetSig $(=\not\!$	
		$\rm m_{ll} > 10~GeV/c^2$	
Signal Cuts	Two or more jets with $E_{ m T} > 15~{ m GeV}$ within $ \eta < 2.5$		
	${\rm H_T} > 200~{\rm GeV}$		
	Opposite sign of two leptons		

$t\overline{t} \rightarrow dilepton$ Signal and background modeling Validation

Agreement is excellent

Systematic uncertainty of A'_{FB} measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)			
Source of Uncertainty	Value		
$(A_{\sf FB}')$			
Backgrounds	0.029		
Asymmetric Modeling	0.006		
Jet Energy Scale	0.004		
Symmetric Modeling	0.001		
Total Systematic	0.030		
Statistical	0.052		
Total Uncertainty	0.060		

Systematic uncertainty of $A_{\text{FB}}^{\prime\prime}$ measurement

CDF Run II Preliminary (9.1 fb^{-1})			
Source of Uncertainty	Value		
(A_{FB}'')			
Backgrounds	0.037		
Asymmetric Modeling	0.012		
Jet Energy Scale	0.003		
Symmetric Modeling	0.004		
Total Systematic	0.039		
Statistical	0.072		
Total Uncertainty	0.082		

Comparison of A'_{FB} among SM prediction and measurements at CDF and D0.

Source A'_{FB} Description		Reference		
Calculation	0.038±0.003	NLO SM	PRD 86,034026 (2012)	
	$0.094\substack{+0.032\\-0.029}$	Lepton+jets	jets PRD 88 072003 (2013)	
CDF	0.072 ± 0.060	Dilepton	To be submitted	
	$0.090\substack{+0.028\\-0.026}$	Combination	to PRL soon	
 D0	$0.047\substack{+0.025\\-0.027}$	Lepton+jets, $ q_l\eta_l < 1.5$	D0 Note 6394-CONF	
	0.044 ± 0.039	Dilepton	PRD 88, 112002 (2013)	

- Empirical determined methodology works well
- Need to know why it works
- Detailed study in following slides
- To be submitted to PRD, manuscript in preparation, Z. Hong *et al*

A[/]_{FB} Methodology Study

Results with MC study:

• $q_I \eta_I$ distribution well described by double-Gaussian

Results with MC study:

• $A'_{\rm FB}$ comes from shift in mean $\rightarrow A'_{\rm FB}$ linearly related with mean

$A'_{\rm FB}$ Methodology Study

Results with MC study:

• Double-Gaussian does better job in modeling differential asymmetry in large $q_l\eta_l$ region

A(q_Iη_I) still most sensitive way to measure A^I_{FB}
 Provides better effective measure of mean

A[/]_{FB} Methodology Study

- New way of looking at the data: Differential contribution to A^l_{FB}
- What do we learn?
 - ullet Asymmetry mostly from $|\eta| < 2.0$
 - Best detector coverages here
 - Mismodeling in region with small contribution —

•
$$a \cdot anh\left(rac{1}{2}q_l\eta_l
ight)$$
 is excellent for $|q_l\eta_l| < 2.5$

- More than good enough
- Now we know why! Moving forward with confidence

$A'_{\rm FB}$ CDF combination

CDF Run II Preliminary

Source of uncertainty	L+J (9.4fb^{-1})	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
JES	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	
$t\bar{t}$ Reconstruction Equations

$$\begin{split} M_{l^+\nu}^2 &= (E_{l^+} + E_{\nu})^2 - (\vec{p}_{l^+} + \vec{p}_{\nu})^2 = M_W^2 \\ M_{l^-\bar{\nu}}^2 &= (E_{l^-} + E_{\bar{\nu}})^2 - (\vec{p}_{l^-} + \vec{p}_{\bar{\nu}})^2 = M_W^2 \\ M_{l^+\nu b}^2 &= (E_{l^+} + E_{\nu} + E_b)^2 - (\vec{p}_{l^+} + \vec{p}_{\nu} + \vec{p}_b)^2 = M_t^2 \\ M_{l^-\bar{\nu}\bar{b}}^2 &= (E_{l^-} + E_{\bar{\nu}} + E_{\bar{b}})^2 - (\vec{p}_{l^-} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^2 = M_t^2 \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_x &= (\vec{E}_T)_x \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_y &= (\vec{E}_T)_y \end{split}$$

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_{b}, E_{\bar{b}}) = & P(p_{z}^{t\bar{t}}) P(p_{T}^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{jet1}^{measure} - E_{jet1}^{fit}}{\sigma_{jet1}}\right)\right) \times \frac{1}{\sigma_{jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{jet2}^{measure} - E_{jet2}^{fit}}{\sigma_{jet2}}\right)\right) \\ & \frac{1}{\sigma_{x}^{f\bar{t}}\tau} \exp\left(-\frac{1}{2} \left(\frac{f_{x}^{measure} - f_{x}^{fit}}{\sigma_{x}^{f}\tau}\right)\right) \times \frac{1}{\sigma_{y}^{f\bar{t}}\tau} \exp\left(-\frac{1}{2} \left(\frac{f_{y}^{measure} - f_{y}^{fit}}{\sigma_{y}^{f}\tau}\right)\right) \end{split}$$

- The ratio of $A_{FB}^{t\bar{t}}/A_{FB}^{\prime}$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{FB}^{t\bar{t}}$ result (0.16 ± 0.05), this yields prediction of 0.070 < A_{FB}^{\prime} < 0.076