Identify Bad Channels Timing Correction (Si, Csl)

Lei Zheng 05/09/2019

Data

Run_0265.dat.24-07-18_20h22m45s

This run is gas-in run and contains 11 datafiles in total

Collected in 24/07/2018

Identify Bad Channels
1.1 Identify bad channels, Si
1.2 Identify bad channels, Csl

See 1st meeting 2019

2. Timing Correction 2.1 Timing Correction, Si (see 1st meeting 2019) <u>2.2 Timing Correction, Csl</u>

Time vs Energy (Csl_0_0 only)

Global Tendency

clearly showing that timing depends on energy (energy \uparrow , timing \uparrow , red line)

T305E1320 vs T280E248 After Normalization

Regional Structure, WHY?

Timing's dependence on energy opposite to global one (energy \uparrow , timing \downarrow , green circle)

Consider two quick comparisons of event waveforms:

1) the same observed time, but very different energy

2) the same energy, but different time

Timing (ADC Channel) hGET_TEHitPattern2D_CslCrystal_0_0

Same Time(300), but different Energies(612, 806, 961, 1351)

mmWaveformY:mmWaveformX {mmEventIdx==29863&&mmCobo==1&&mmAsad==0&&mmAget==0&&mmChan==2}

Timing: 300, Energies: 612, 806, 961, 1351

Same Energy(729), but different Times(291, 296, 298, 304, 309)

mmWaveformY:mmWaveformX {mmEventIdx=37903&&mmCobo==1&&mmAsad==0&&mmChan==2} Energy: 729; Timings: 291, 296, 298, 304, 309, 426

These pulses basically all look the same despite the different times. Not clearly there is anything to to learn other than there is jitter at the bottom of the pulse. We pick the time from the actual minimum, rather than a fit. not clear it is worth moving to a fit to improve the timing measurement.

Timing of Csl_0_0, before and after correction

Timing of CsI_0_0 after calibration with fitting results

- 1. The Gaussian fitting result does not perfectly match the peak, might be caused by the a little wider fitting range which involves some part of the asymmetric background.
- 2. The asymmetric background is caused by the fitting range in the TvsE plot
- 3. Won't bother refitting to get a better resolution measurement.

T_Corr Fitting Results of ALL CsI Crystals

Crystal	Peak	P_Err	Mean	M_Err	Sigma	S_Err							
WOCO	261.80	6.62	-0.255	0.095	4.549	0.090	W2C0de	ad0.00	0.00	0.000	0.000	0.000	0.000
WØC1	259.44	6.58	-0.590	0.088	4.337	0.081	W2C1	239.31	6.51	-0.924	0.091	4.216	0.085
WØC2	240.02	6.40	-0.572	0.094	4.483	0.093	W2C2	327.28	6.95	0.151	0.091	4.904	0.083
WØC3	186.41	5.67	-0.886	0.105	4.352	0.101	W2C3	200.88	5.86	-1.021	0.100	4.279	0.093
WØC4	323.84	7.39	-0.596	0.082	4.439	0.077	W2C4	295.36	6.78	-0.406	0.092	4.903	0.093
WØC5	282.26	6.24	1.588	0.114	5.164	0.099	W2C5	161.32	4.92	-0.893	0.135	5.288	0.145
WØC6	305.10	7.23	-0.186	0.086	4.469	0.082	W2C6	279.02	6.76	-0.592	0.087	4.408	0.080
WØC7	299.09	6.69	0.704	0.100	4.891	0.089	W2C7	193.13	5.25	0.386	0.117	4.963	0.107
WØC8	248.99	6.67	-0.505	0.089	4.154	0.082	WZC8 ^{de}	^{ad} 0.00	0.00	0.000	0.000	0.000	0.000
1114 60	201 00	6 30	0.000	0 407	E	0 445							
WICO	291.09	6.39	0.032	0.107	5.605	0.115	W3C0	165.69	4.82	-0.412	0.135	5.386	0.138
W1C1dead0.00		0.00	0.000	0.000	0.000	0.000	W3C1	363.39	7.51	-0.149	0.081	4.707	0.076
W1C2	362.17	7.23	-0.229	0.095	5.569	0.105	W3C2	252.54	5.86	0.454	0.113	5.265	0.103
W1C3	216.61	5.59	-0.151	0.119	5.406	0.125	W3C3	356.48	7.49	-0.397	0.082	4.647	0.076
W1C4	391.87	7.46	-0.370	0.089	5.485	0.095	W3C4	478.83	8.57	-0.351	0.072	4.899	0.071
W1C5	306.95	6.41	0.416	0.116	6.062	0.131	W3C5	391.07	7.65	0.074	0.080	4.802	0.074
W1C6	279.81	6.34	-0.598	0.102	5.295	0.105	W3C6dead0.00		0.00	0.000	0.000	0.000	0.000
W1C7	288.81	6.29	0.693	0.113	5.682	0.118	W3C7	258.43	6.37	-0.335	0.096	4.694	0.091
W1C8	125.60	4.35	-0.831	0.159	5.505	0.181	W3C8	271.23	6.19	0.176	0.100	5.045	0.093

dead channels

compared to other values in the same wall, these values are a little larger

Conclusion

1. We observed a real timing dependence as a function of energy from small to large energies, but there are variations due to jitter/timing measurement procedure that probably don't matter.

- 2. We have calibrated the system.
 - 1. There are improvements that could be made to the individual event timing, and to the calibration of the low energy events, but we will leave them for now and move on.
 - 2. Resolution looks to be about ~180ns, and not vary much between channels

3. Ready to start correlating hits to find particles in all three detectors next

Appendix: jitter in the waveforms

mmWaveformY:mmWaveformX {mmEventIdx==36503&&mmCobo==1&&mmAsad==0&&mmAget==0&&mmChan==2} T308E750 vs T295E1080

