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Physics and 
AstronomyWhy care about dark matter?

Astronomical observations cannot be explained by general relativity using 
known standard model particles. This suggests:
Neutral, Beyond Standard Model (BSM) matter contributes to majority of mass in 
the universe.

Particle dark matter hypothesis can 
explain data in:
● Galactic rotational velocities
● Cosmic Microwave Background
● Gravitational lensing observations
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● Sensitive to < 10 GeV/c2 Weakly Interacting Massive 
Particles (WIMPs), in unsearched regions of 
parameter space.

● Also sensitive to many different possible DM candidate 
models and BSM matter.

● Leverages experience from previous iterations: 
SuperCDMS @ Soudan, CDMSLite, CDMS II, etc…

Direct detection experiment: Has possibility to observe dark matter particle 
scattering off of electrons/nuclei through several mechanisms.
Why use the Super Cryogenic Dark Matter Search (SuperCDMS)?
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Method of Detection: Measures ionization and vibrational 
energy (phonons) produced by scattering events within 
cryogenically cooled, semiconductor targets.

Background Suppression:
● Located underground to reduce cosmic radiation.
● Shielded with lead, polyethylene, and water to reduce environmental 

radiation.
● Clean room and active measures during fabrication to reduce 

radioactive contamination.
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Polyethylene shielding Cavern Walls

Upcoming experiment at 
SNOLAB will have better 
detector performance and 
background suppression than 
previous iterations.



Physics and 
AstronomySuperCDMS Detector Design

Features:
● Ultra-high purity semiconductor (Si/Ge) target where 

interactions produce charges and phonons.

● Transition-Edge-Sensors (TES) for phonon measurement 
patterned photolithographically onto crystal.

● Charge-collecting electrodes, biased across detector to 
amplify phonon gain and measure ionization yield.
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SuperCDMS Single Detector

(Left) Microscopic View of Phonon-Absorbing Aluminum Sensors
(Right) Close up of TES

Event in Detector, B. Krosigk 2018
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Event in Detector, B. Krosigk 2018

Detector Response from Interaction to Signal

Sequence of energy transfer:
1. Scattering processes deposit energy into the 

crystal, ionizing electrons which are accelerated 
to the surface, creating extra phonons as they 
interact with the lattice.

2. Phonons absorbed by aluminum sensors at 
surface break Cooper pairs, which migrate to 
TES and raise the temperature.

3. Temperature change causes dramatic spike in 
resistance along superconducting transition. 
This appears as a current pulse in our readout 
channels.
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Temperature in mK
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Expected Pulse

● There are multiple readout channels in CDMS 
detectors; summing over all channel pulses 
produces Phonon Total (PT) pulse. 

● Understanding the physical mechanisms that 
produce this pulse shape will help us:
○ More effectively reject background during data 

analysis.
○ Distinguish between different interaction types.
○ Improve energy and position reconstruction. Top View: CDMSLite Channel Layout

Real data “template” constructed by averaging 
over select set of high quality pulses.
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AstronomyWhy Simulate the Experiment?

Big Picture: Improve the sensitivity of dark matter searches.

Simulations help by…
● Predicting detector response for both signal and background events.
● Developing analysis selection and search methods to optimize search sensitivity.
● Predicting which methods will improve calibration and resolution procedures.
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Goal of this work:
Using historical experimental data (2018 CDMSLite), improve 
the physical credibility of simulation for future use in 
SuperCDMS analysis.

Two examples: by ensuring simulation reproduces average 
pulse shape as well as producing correct peak time (Peak Bin).

Peak Bin
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● Using a combination of Monte Carlo techniques and Diff. Eq. solvers, 
millions of microscopic interactions are modeled to reproduce 
macroscopic observables. 

● Probability coefficients and physical quantities are used to solve sets of 
parameterized equations for multiple processes, each with multiple 
parameters.

● Not all parameters can be derived from first principles, many need to be 
determined phenomenologically. 

Physics Modeling in Detector 
Simulations
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Major focus of this work: 
Find the best parameter 
values by comparing 
simulation output to 
experimental data.

Probability to absorb phonons at aluminum (left) 
vs directly on TES (right) are free parameters 

not easily derived.
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Relevant parameters to this work:
● Tsubst: Substrate temperature
● PhononAbsQETs: Probability to absorb 

phonon at aluminum
● TESsubgapAbs: Probability to absorb 

phonon at tungsten TES
● Tc: Superconducting transition 

temperature
● Tw: Superconducting transition width
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Phonon Sensor Diagram

TES Superconducting Resistance Curve
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Expected Parameter Impact to Pulse 
Shape
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Rise time and 
peak shape from 
initial absorption 
of phonons at Al 
phonon sensors:

PhononAbsQETs

Early fall time determined by TES 
cooldown rate and remaining 
high-energy phonons:

Tc, Tw, Tsubst

Late fall time determined by 
uniformly distributed phonons 

below Al bandgap:

TESsubgapAbs

Relevant parameters to this 
work:

● Tc: Superconducting 
transition temperature

● Tw: Superconducting 
transition width

● Tsubst: Substrate 
temperature

● PhononAbsQETs: 
Probability to absorb 
phonon at aluminum

● TESsubgapAbs: 
Probability to absorb 
phonon at tungsten TES
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Need to be confident that simulation accurately predicts Standard Model response 
before using it in dark matter search analyses.

However, when considering event samples from calibration data, the simulation 
currently fails several validation checks:

Simulation vs Real Data Peak Bin 
Simulation vs Real Data Pulses
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Perhaps better parameter values 
could be the solution?

Simulation Tuning: Methodically 
varying parameters to find the values which 
result in the best match of simulation to 
experimental data.

*This will be an iterative process whenever 
physics modeling is changed within 
simulation.

R. Bhattacharyya, 2025

Peak Bin = Time bin of maximum pulse strength
R134 = 2018 CDMSLite real datarun 134
Sample V6 = Simulated CDMSlite response

Examples of Failed Validation
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AstronomyTuning Goals for This Work

1. Determine a reliable procedure for simulation parameter tuning.

2. Build a software framework to automate that tuning procedure.

3. Find first approximation for best parameter values by tuning 
simulation to reproduce average pulse shape.

4. Verify results by revisiting validation checks.

5. Use results to investigate what physics modeling improvements may 
be necessary in simulation.
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While we want the simulation to reproduce all variations in the data, we will start with a single 
variable for a single distribution:

Chi2 (χ2): The sum of squared residuals between average simulation pulse and average data 
pulse, which is used to quantify “optimal” parameters.

(S. Golwala, 2000)

          = Simulated pulse
          = Normalized pulse shape from real data
A       = Scaling amplitude
J(fi)   = Noise power spectral density
fi       = i’th frequency bin

χ2 = 0 would imply a perfect match.

How to Define Optimal

18

High χ2 Pulse Low χ2 Pulse
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Finding lowest χ2 for a single parameter isn’t too difficult. 
Can see how lowest χ2 corresponds to the best pulse 
shape match between simulation and real data.

One-Dimensional χ2 Minimization

19

Local minimum
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When minimizing χ2 over multiple 
parameters, correlation and 
degeneracies are revealed.

This motivates the creation of a 
more sophisticated minimization 
algorithm for any set of N 
parameters.

20

χ2 Minimum in 2D Region
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To do tuning in multiple dimensions we use an automated, recursive 
gradient descent algorithm to minimize the χ2.
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This allows:
● Improved automation to reduce time spent by 

researchers.
● Systematic reproducibility to validate results.

Algorithm structure:
● N-dimensional for any set of simulation parameters.
● Descends each axis until finding local minimum, then 

switches to new axis.
● Recursively interfaces with simulation package to run 

jobs, analyze data, and descend gradient.

Descent path on “dummy” 2D test data

f(x
,y

)
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Using the previously described tool, we now move to find best-fit parameters 
for 2018 CDMS Low Ionization Threshold Experiment (CDMSLite) data.

Goals: 
● Determine which parameter values achieve best possible fit to data.
● Learn more about the effect of specific parameters and event generation on pulse 

shape.

Steps to achieve this:
1. Simulate a set of events across entire detector volume with best guess “seed” 

parameters.
2. Calculate average pulse and χ2 relative to CDMSLite average
3. Determine next step in parameter space using descent algorithm.
4. Repeat until a χ2 minimum is found.

22
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Result: Before and After Tuning for 
Average Shape
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Pre-Tuning Shapes

Post-Tuning Shapes

Log-Scale PT Pulse Linear-Scale PT Pulse— Simulated PT Pulse
- - - - Real CDMSlite Template

After tuning, the simulation 
demonstrates better match to data. 
However there are still differences at 
the peak and tail-ends of pulse.
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Pre-Tuning Distributions
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Post-Tuning Distributions

Peak Bin = Time bin of maximum pulse strength
R134 = 2018 CDMSLite real datarun 134
Sample V6 = Simulated CDMSlite response

R. Bhattacharyya, 2025R. Bhattacharyya, 2025

We have shown that tuning improved the simulation’s average pulse shape. Next step is to 
investigate event-by-event variation: The mean and RMS of Peak Bin distributions cleary 
are better matched…
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AstronomyNext Steps, Position Dependence?

What can we learn about the detector response by looking at the position dependence of χ2 

through different event-by-event radii from the center of detector?

● Best fit (lowest χ2) occurs around radius 25 mm. This isn’t surprising as it is the 
average R of a uniformly distributed sample across a cylinder with our detector radius.

● It is not obvious why the pulse shape varies so much as a function of position. More 
work is needed to understand this dependence. 26

Event-by-Event Radius vs χ2 Single Event Pulses Through R
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● Simulation still does not match data. Need to 
understand cause of positional variation in 
pulse shape.

● Possible avenues to investigate this positional 
variation:
○ New physics modeling: specular surface 

reflection, surface downconversion.
○ Tuning campaign with different parameters, eg.  

anharmonic decay

● After confidence in simulation is achieved, 
tuning campaign for the new SuperCDMS 
detectors will be needed.

● After all tuning and validation is complete, 
simulation-informed analysis of new 
SuperCDMS data (expected 2026) can occur. 27

— Simulated PT Pulse 
- - - - Real CDMSlite Template
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● We have presented our formalism to iteratively tune the simulation to reproduce 
the average shape of experimental data.

● This optimization procedure has been constructed and validated in a software 
package called Autotune to significantly automate the tuning process and handle 
correlated parameters.

● Average pulse shape and certain pulse shape variations demonstrate a noticeable 
improvement in reproducing experimental data after tuning.

● Discrepancies in simulation output make it clear that our next steps are now to 
understand the cause of position-dependent pulse shapes, and to use that 
knowledge to improve simulation modeling. 

This progress represents a significant step forward in our simulations program, 
which may provide the linchpin for a dark matter discovery in future 
simulation-informed analysis.
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Models SuperCDMS is sensitive to:
○ Weakly Interacting Massive Particles (WIMPS)
○ Asymmetric dark matter
○ Dark photons
○ Axions
○ Lightly Ionizing Particles (LIPs)
○ Coherent Neutrino Scattering

30
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Backup: Bullet Cluster 
Counter-argument to modified gravity
Blue = Gravitational lensing 
mass distribution

Red = Xray-based mass 
distribution

Only way modified gravity works 
here is if non-local fields exist.

31



Physics and 
AstronomyBackup Sensitivity

R. Agnese et al., “Projected Sensitivity of the SuperCDMS SNOLAB 
experiment”, 2016 [arXiv:1610.00006] 32
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Backup: Simulation Improved 
Sensitivity
Watson Undergraduate TAMU 
thesis 2016

Optimized = Including 
simulated background hits in 
detectors
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J. Winchell Thesis 2023
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J. Winchell Thesis 2023
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36J. Winchell Thesis 2023
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Backup: Simulation Statistics on Event 
Position
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CDMSLite detectors have 38mm 
radius → <r> = 25mm
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Backup: Positional Variation and Failed 
Validation
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Simulation
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Backups: Uniform vs Single Event 
Position
● Contaminant = 

Simulated events occur 
uniformly through volume

● Central = Simulated 
events occur in exact 
center of detector crystal

● Including larger radius 
events in average 
broadens pulse peak.

○ This effect is an open 
research question we are 
investigating.
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Backups: Absorption Probability Effect 
on Pulse
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*PT traces have been normalized and shifted in time arbitrarily for visualization 
purposes 

Broadening of pulse at peak times.

Hotter temperatures result in smaller 
superconducting response.

Faster TES cooldown after peak times.

More phonons absorbed at peak means less 
remaining afterwards, allowing faster cooling.

Increasing absorption 
probability causes:

Possibly due to:
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Backup: Transition Temp Effect on 
Pulse
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*PT traces have been normalized and shifted in time arbitrarily 
for visualization purposes 
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Backup: Simulation Statistics on Pulse 
Shape
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How to reject backgrounds in real data
Background spectrum
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